摘要:
It is aimed to provide a battery pack capable of securing safety by preventing A battery contained in the battery pack from entering a burning state even if the battery releases high-temperature gas in an abnormal state. An exhaust duct 1C for permitting the flow of gas released from the battery is provided and the gas is exhausted to the outside after reducing the temperature thereof in the exhaust duct 1C. A flow passage area of the exhaust duct 1C is in the range of not less than 0.5 mm2 and not more than 15 mm2 per 1 Ah of the battery capacity. The exhaust duct 1C is provided with a gas cooling portion 1L and a spark trapping portion 1M.
摘要:
It is aimed to provide a battery pack capable of securing safety by preventing A battery contained in the battery pack from entering a burning state even if the battery releases high-temperature gas in an abnormal state. An exhaust duct 1C for permitting the flow of gas released from the battery is provided and the gas is exhausted to the outside after reducing the temperature thereof in the exhaust duct 1C. A flow passage area of the exhaust duct 1C is in the range of not less than 0.5 mm2 and not more than 15 mm2 per 1 Ah of the battery capacity. The exhaust duct 1C is provided with a gas cooling portion 1L and a spark trapping portion 1M.
摘要:
A battery pack includes a battery having a risk of releasing a gas under abnormal conditions, a case that accommodates the battery, and an oxygen reducing portion that reduces an amount of oxygen within the case.
摘要:
A battery pack is provided in which battery characteristics are not degraded in normal use and, even if a cell reaches a high temperature and a high-temperature gas is released from the inside of the cell, the spread of combustion to the entire pack can be suppressed to reduce damage. The battery pack is provided with cells, a housing for accommodating the cells and a thermal expansion section capable of reducing internal clearances between the cells and the housing upon the application of heat.
摘要:
A PTC resistor according to the present invention comprises at least one PTC composition which comprises at least one resin and at least two conductive materials. The at least two conductive materials comprises at least two conductive materials different from each other. The at least one PTC composition may comprise a first PTC composition which comprises a first resin and at least one first conductive material and a second PTC composition which is compounded with the first PTC composition and comprises a second resin and at least one second conductive material. The at least one first conductive material is at least partially different from the at least one second conductive material. One of the first resin and the second resin may comprise a reactant resin and a reactive resin which is cross-linked with the reactant resin. The PTC resistor may comprise a flame retardant agent. The PTC resistor may comprise a liquid-resistant resin.
摘要:
A battery module includes a first enclosure, a second enclosure, and a plurality of batteries having vent holes accommodated between the first and second enclosures, and has a configuration in which a first partition member for accommodating the batteries individually at a position facing the battery vent holes in at least one of the first enclosure and the second enclosure is provided.
摘要:
A battery pack of the present invention includes: a battery assembly including a plurality of batteries having a sealed portion, the plurality of batteries being connected to each other; a terminal portion electrically connected to the battery assembly and outputting electric power; and a composite layer structure including a heat-absorbing layer and a heat-conductive layer layered on the heat-absorbing layer, the composite layer structure being arranged at least at a part of a periphery of the battery assembly. The heat-absorbing layer has a specific heat of 1,000 J/kg·° C. or more. The heat-conductive layer has a heat conductivity of 10 W/m·K or more. This configuration allows for a small, light, and highly safe battery pack that is free from battery pack damage even when a battery in the battery pack has trouble and emits a high-temperature inflammable gas to expose the inside of the battery pack to a high-temperature environment.
摘要:
The invention provides a battery pack and a battery-equipped device in which, even if a battery experiences an abnormal event to cause thermal runaway, and generates heat, temperature increase in the battery pack and batteries except for the battery which experienced the abnormal event can be prevented. For this purpose, a heat absorbing member 4 is arranged in space inside a battery pack 1 between a casing 2 and batteries 3. Even if one of the batteries 3 experiences thermal runaway, the heat absorbing member 4 absorbs heat generated by the battery 3, thereby preventing the thermal runaway from occurring in the other batteries 3.
摘要:
An electric power equipment has a main body case, a plurality of power supply elements provided in the main body case, and a fire-extinguishing agent discharge space disposed facing the plurality of power supply elements. The fire-extinguishing agent discharge space includes fire-extinguishing agent spray space having a plurality of fire-extinguishing agent spray holes for spraying a fire-extinguishing agent toward the plurality of power supply elements, and a fire-extinguishing agent supply space coupled to the fire-extinguishing agent spray space via a plurality of fire-extinguishing supply holes. A fire-extinguishing agent tank is coupled to the fire-extinguishing agent supply space via a shutoff valve.
摘要:
An electrode group 4 having a positive electrode plate and a negative electrode plate arranged with a porous insulating layer interposed therebetween and end portions of the positive and negative electrode plates protruding from the porous insulating layer is prepared, and current collector plates 10 and 11 each of which is provided with a projection 12 having a gap 12a formed therein is prepared. With the end portion 2a of the electrode plate protruding from the porous insulating layer 3 kept in contact with a principle surface of the current collector plates 10 and 11, the projection 12 is locally heated to join the end portion 2a of the electrode plate and the current collector plates 10 and 11. the end portion 2a of the electrode plate is welded to the current collector plates 10 and 11 with a fused material obtained by fusing the projection 12.