摘要:
An implantable cardiac system has a master pacing unit and a remote satellite pacing unit. The master pacing unit is electrically coupled to a right side of a patient's heart via a lead assembly. The satellite pacing unit is a leadless device mounted on the left side of the patient's heart and is wirelessly controlled by the master pacing unit. The satellite pacing unit is affixed to the heart by one or more mounting members. The base of the satellite unit case has a gel-like material which facilitates adhesion of the pacing unit to the heart tissue. The gel-like material promotes tissue growth to hold the pacing unit in place on the heart. The gel-like material may be composed of polyvinlpyrrolidone and may contain a steroid, such as dimethyl sulfoxide (DMSO), or dexamethazone sodium phosphate.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode.
摘要:
A subcutaneous cardiac stimulation system verifies accelerated arrhythmia detection before delivering accelerated arrhythmia therapy to the heart. The stimulation system includes a verification circuit that verifies detection of the accelerated arrhythmia with each of first and second sense channels utilizing first and second electrode configurations. The therapy circuit delivers the stimulation therapy to the heart if the accelerated arrhythmia detection is verified with each of the first and second electrode configurations. The system also compensates for transient rate changes during the detection of the accelerated arrhythmia.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
摘要:
The invention relates to a medical implantable lead for monitoring and/or controlling an organ inside a human or animal body. The lead comprises a conducting arrangement having a first conducting coil of at least one electrically conducting wire for connecting a first electrode electrically to a connector to receive and/or transmit electric signals from and to the tissue, respectively. The lead is tapered in a distal portion and has a smaller cross sectional dimension at the distal portion than at the rest of the lead. The first conducting coil is terminated at a termination point on a distance from the distal end. The conducting arrangement has a first end conductor in the form of a non-coiled electric conductor or an eccentrically positioned small diameter coil which connects the first electrode electrically with the coil.
摘要:
In a biventricular heart stimulator and a method for controlling such a biventricular heart stimulator, successive stimulation pulses are delivered to the ventricles of a heart such that stimulation pulses in a single heartbeat cycle are respectively first delivered to the first ventricle and then to the second ventricle. Capture or loss of capture in response to stimulation pulses delivered to one ventricle is detected. As a result of a detected loss of capture, preventative measures are taken for preventing loss of capture in the other ventricle.
摘要:
Techniques are provided for estimating left atrial pressure (LAP) or other cardiac performance parameters based on measured conduction delays. In particular, LAP is estimated based interventricular conduction delays. Predetermined conversion factors stored within the device are used to convert the various the conduction delays into LAP values or other appropriate cardiac performance parameters. The conversion factors may be, for example, slope and baseline values derived during an initial calibration procedure performed by an external system, such as an external programmer. In some examples, the slope and baseline values may be periodically re-calibrated by the implantable device itself. Techniques are also described for adaptively adjusting pacing parameters based on estimated LAP or other cardiac performance parameters. Still further, techniques are described for estimating conduction delays based on impedance or admittance values and for tracking heart failure therefrom.
摘要:
A patient-specific hemodyanmic status model is determined from impedance data collected during periods of normal and abnormal hemodynamic status by deriving parameter values of a set of multiple impedance-derivable parameters from impedance signals collected during periods of normal hemodynamic status and in connection with periods of abnormal hemodynamic status. The parameter values are employed to estimate coefficients of a linear parametric status model. These coefficients can then be used together with parameter values determined from impedance signals determined during status assessment periods in order to determine a current hemdoynamic status of the patient.