摘要:
A derived disparity vector is determined based on spatial neighboring blocks and temporal neighboring blocks of the current block. The temporal neighboring blocks are searched according to a temporal search order and the temporal search order is the same for all dependent views. Any temporal neighboring block from a CTU below the current CTU row may be omitted in the temporal search order. The derived DV can also be used for predicting a DV of a DCP (disparity-compensated prediction) block for the current block in the AMVP mode, the Skip mode or the Merge mode. The temporal neighboring blocks may correspond to a temporal CT block and a temporal BR block. In one embodiment, the temporal search order checks the temporal BR block first and the temporal CT block next.
摘要:
A method of illumination compensation for three-dimensional or multi-view encoding and decoding. The method incorporates an illumination compensation flag only if the illumination compensation is enabled and the current coding unit is processed by one 2N×2N prediction unit. The illumination compensation is applied to the current coding unit according to the illumination compensation flag. The illumination compensation flag is incorporated when the current coding unit is coded in Merge mode without checking whether a current reference picture is an inter-view reference picture.
摘要:
A method and apparatus using pseudo residues to predict current residues for three-dimensional or multi-view video coding are disclosed. The method first receives input data associated with a current block of a current picture in a current dependent view and determines an inter-view reference block in a first inter-view reference picture in a reference view according to a DV (disparity vector), where the current picture and the first inter-view reference picture correspond to same time instance. Pseudo residues are then determined and used for encoding or decoding of the current block, where the pseudo residues correspond to differences between a corresponding region in an inter-time reference picture in the current dependent view and a pseudo reference region in a pseudo reference picture in the reference view, and where the inter-time reference picture and the pseudo reference picture correspond to same time instance.
摘要:
A method of sub-PU (prediction unit) syntax element signaling for a three-dimensional or multi-view video coding system is disclosed. A first syntax element associated with a texture sub-PU size is transmitted only for texture video data and a second syntax element associated with a depth sub-PU size is transmitted only for depth video data. The first syntax element associated with the texture sub-PU size is used to derive an IVMP (inter-view motion prediction) prediction candidate used for a texture block. The second syntax element associated with the depth sub-PU size is used to a MPI (motion parameter inheritance) prediction candidate for a depth block.
摘要:
A method for a three-dimensional encoding or decoding system incorporating sub-block based inter-view motion prediction is disclosed. The system utilizes motion or disparity parameters associated with reference sub-blocks in a reference picture of a reference view corresponding to the texture sub-PUs split from a current texture PU (prediction unit) to predict the motion or disparity parameters of the current texture PU. Candidate motion or disparity parameters for the current texture PU may comprise candidate motion or disparity parameters derived for all texture sub-PUs from splitting the current texture PU. The candidate motion or disparity parameters for the current texture PU can be used as a sub-block-based inter-view Merge candidate for the current texture PU in Merge mode. The sub-block-based inter-view Merge candidate can be inserted into a first position of a candidate list.
摘要:
A method and apparatus for three-dimensional video encoding and decoding using disparity derived depth prediction are disclosed. Embodiments of the present invention determine a disparity vector related to a collocated texture block in the dependent view and generate converted depth samples from the disparity vector. The generated converted depth samples are used as a predictor or Merge candidate for the current depth block. The Merge candidate corresponding to the converted depth samples can be placed in the merging candidate list at a location before TMVP (temporal motion vector predictor) merging candidate. The converted depth samples can be generated from the disparity vector according to a function of the disparity vector. Information associated with the function can be signaled explicitly to a decoder or derived implicitly by the decoder. One aspect of the present invention addresses simplified disparity to depth conversion, specifically division-free disparity-to-depth conversion.
摘要:
A method and apparatus of three-dimensional/multi-view coding using aligned reference information are disclosed. The present system aligns the reference information associated with the reference view of the derived DV with the reference information associated with a selected reference view by modifying the selected reference view or by modifying the derived DV or a converted DV derived from depth block pointed by the derived DV. The DV can be derived using the Neighboring Block Disparity Vector (NBDV) process. When the reference view of the derived DV is different from the selected reference view, the system scales the derived DV or changes the converted DV to refer to the selected reference view. The system may also set the selected reference view to the reference view of the derived DV.
摘要:
A method for reducing the storage requirement or complexity of context-based coding in three-dimensional or multi-view video encoding and decoding is disclosed. The system selects the context based on selected information associated with one or more neighboring blocks of the current block conditionally depending on whether the one or more neighboring blocks are available. The syntax element is then encoded or decoded using context-based coding according to the context selection. The syntax element to be coded may correspond to an IC (illumination compensation) flag or an ARP (advanced residual prediction) flag. In another example, one or more syntax elements for coding a current depth block using DMM (Depth Map Model) are encoded or decoded using context-based coding, where the context-based coding selects a by-pass mode for at least one selected syntax element.