摘要:
Micro-fluid ejection devices, methods for making micro-fluid ejection heads, and micro-fluid ejection heads, including a micro-fluid ejection head. One such micro-fluid ejection head has relatively high resistance thin film heaters adjacent to a substrate. The thin film material comprises silicon, metal, and carbon (SiMC wherein M is a metal). Each thin film heater has a sheet resistance ranging from about 100 to about 600 ohms per square and a thickness ranging from about 100 to about 800 Angstroms.
摘要:
Micro-fluid ejection devices, methods for making micro-fluid ejection heads, and micro-fluid ejection heads, including a micro-fluid ejection head. One such micro-fluid ejection head has relatively high resistance thin film heaters adjacent to a substrate. The thin film material comprises silicon, metal, and carbon (SiMC wherein M is a metal). Each thin film heater has a sheet resistance ranging from about 100 to about 600 ohms per square and a thickness ranging from about 100 to about 800 Angstroms.
摘要:
Micro-fluid ejection devices, methods for making micro-fluid ejection heads, and micro-fluid ejection heads, including a micro-fluid ejection head. One such micro-fluid ejection head has relatively high resistance thin film heaters adjacent to a substrate. The thin film material comprises silicon, metal, and carbon (SiMC wherein M is a metal). Each thin film heater has a sheet resistance ranging from about 100 to about 600 ohms per square and a thickness ranging from about 100 to about 800 Angstroms.
摘要:
Micro-fluid ejection devices, methods for making micro-fluid ejection heads, and micro-fluid ejection heads, including a micro-fluid ejection head. One such micro-fluid ejection head has relatively high resistance thin film heaters adjacent to a substrate. The thin film material comprises silicon, metal, and carbon (SiMC wherein M is a metal). Each thin film heater has a sheet resistance ranging from about 100 to about 600 ohms per square and a thickness ranging from about 100 to about 800 Angstroms.
摘要:
A micro-fluid ejection head has fluid ejection elements formed as thin film layers on a substrate. Fluid flow features on the substrate channel fluid from a fluid source to ejection chambers surrounding the ejection elements. A pump on the substrate circulates the fluid from the source to the ejection chambers and back again to the source. The flow refreshes the fluid in the chambers to minimize deleterious effects of evaporation. A controller coordinates the flow rate of the pump and other variables to optimize system productivity. Other embodiments contemplate pump locations, pump types, pump enumeration, and fluidic features, such as pathways, diffusers, chokes and dimensions, to name a few.
摘要:
A micro-fluid ejection head has fluid ejection elements formed as thin film layers on a substrate. Fluid flow features on the substrate channel fluid from a fluid source to ejection chambers surrounding the ejection elements. A pump on the substrate circulates the fluid from the source to the ejection chambers and back again to the source. The flow refreshes the fluid in the chambers to minimize deleterious effects of evaporation. A controller coordinates the flow rate of the pump and other variables to optimize system productivity. Other embodiments contemplate pump locations, pump types, pump enumeration, and fluidic features, such as pathways, diffusers, chokes and dimensions, to name a few.
摘要:
A micro-fluid ejection head has a resistor layer defining a heater element. An insulative layer underlies the heater element and a capping layer on the insulative layer substantially prevents ion mobility between the resistor and insulative layers. Resistance stability of the heater has been shown improved as has adhesion of the heater to the insulator. Representative layers include insulation of methyl silesquioxane (MSQ) in a thickness of about 5000 Angstroms or more, while the cap is a silicon nitride in a thickness of about 2000 Angstroms or less. Other capping layers include silicon carbide, silicon oxide or dielectrics. The resistor layer typifies TaAlN in a thickness of about 350 Angstroms, including overlying anode and cathode conductors that define the heater. Coating layers are also disclosed as are thermal barrier layers.
摘要:
A process for making a fluid ejector head for a micro-fluid ejection device. In one embodiment, the process comprises depositing a thin film resistive layer on a substrate to provide a plurality of thin film heaters. The thin film resistive layer comprises a tantalum-aluminum-nitride material consisting essentially of AlN, TaN, and TaAl alloys, and containing from about 30 to about 70 atomic % tantalum, from about 10 to about 40 atomic % aluminum and from about 5 to about 30 atomic % nitrogen.
摘要:
Micro-fluid ejection devices, methods for making a micro-fluid ejection device, and methods for reducing a size of a substrate for a micro-fluid ejection head. One such micro-fluid ejection device has a polymeric layer adjacent a substrate and at least one conductive layer embedded in the polymeric layer. The polymeric layer comprises at least two layers of polymeric material.
摘要:
A method for forming a floating heater element includes processing a silicon substrate to form a heater stack having the heater element on the substrate with peripheral edge portions, processing the heater stack by depositing and patterning a layer of photoresist or hard mask thereon to substantially mask the heater stack and form a trench through the photoresist or hard mask exposing a surface area of the substrate extending along the peripheral edge portions of the heater element, and processing the masked heater stack and exposed surface area of the substrate by sequentially removing the photoresist and portions of the substrate at the exposed surface area and that underlie the heater element so as to create a well in the substrate undercutting the heater element and open along the peripheral edge portions thereof, the well being capable of filling with a fluid so as to produce the floating heater element.