Abstract:
A method, system and computer program product for controlling a processing unit connected to a network. The method includes providing information to the network by the processing unit via plural communication channels; sending a reset signal from a controller to a reset unit of the processing unit after a specified amount of time, the reset unit being connected only to a communication channel of the controller and being isolated from the plural communication channels; and rebooting the processor unit when the reset signal is received by the reset unit.
Abstract:
A method for producing reliable contacts in microelectronic devices and contacts produced thereby are provided. In one embodiment of the invention, a first conductive layer is formed over a first dielectric layer. The first conductive layer contains a pattern etched therein. A second dielectric layer is deposited over the first conductive layer and a via is etched therein over the pattern, thus exposing a portion of the pattern and the first conductive layer. The structure is then further etched to remove a portion of the first dielectric layer using the exposed portions of the first conductive layer as a mask. The structure is then subject to an isotropic etch to create undercuts in the first dielectric layer underneath the exposed portions of the first conductive layer. A conductive material can then be deposited into the via to fill the undercut, thus contacting the first conductive material on the exposed top, sides, and underside of the layer to produce a highly reliable contact. This technique is also adapted to create vias that are used to connect three or more conductive layers.
Abstract:
Aspects described herein generally relate to communicating between a user equipment (UE) and a cell using frequency division duplexing (FDD) to separate an uplink frequency band and a downlink frequency band with the cell. An indicator can be transmitted from the cell and received by the UE to implement time division duplexing (TDD) on the uplink frequency band. Based at least in part on the indicator, communicating between the UE and the cell can include separating the uplink frequency band into a plurality of downlink subframes for receiving downlink communications from the cell and a plurality of uplink subframes for transmitting uplink communications to the cell.
Abstract:
The invention is a system and method for retrieving and displaying a patent family. The system may be an electronic device, the electronic device comprising a user interface, a database, means for displaying graphical output, and a storage medium containing a database and one or one software modules for retrieving records from the database. The method comprises receiving the number of a U.S. patent application, U.S. Patent Application Publication, or U.S. patent from a user; locating and retrieving from the database any record pertaining to the number; recursively retrieving from the database any records related to said record to construct a patent family; and rendering a diagram depicting the patent family.
Abstract:
A method of data-aided timing recovery for Ethernet systems is disclosed. A first device negotiates a pseudorandom number sequence with a second device and receives a data signal from the second device. The first device samples the received data signal to recover a first training sequence. The first device also generates a second training sequence based on the pseudorandom number sequence. The second training sequence is then synchronized with the first training sequence. The synchronized second training sequence is used to align a receive clock signal of the first device with the data signal received from the second device.
Abstract:
A method of initializing a receiver is performed during an initialization mode. Timing offset values for a timing recovery circuit are repeatedly selected. For each selected timing offset value, timing recovery is performed using the timing offset value and groups of weights for a decision feedback equalizer are repeatedly selected. Each selected group of weights is used to perform blind decision feedback equalization. For each selected group of weights, a metric indicating data reception quality is computed. A timing offset value and a group of weights are chosen based on the computed metrics.
Abstract:
The present invention is directed to a method and apparatus that satisfies the need for a bioelectronic tongue for food allergy detection. The method of detecting concentration of food allergen incorporates antibodies into an electronic tongue to create a bioelectronic tongue. Additionally the method uses impedance, capacitance, and/or other related electrochemical methods for detecting analyte in complex media. Furthermore the method additionally includes methods to subtract out non-specific interactions. The method also subtracts non-specific interactions. The device/apparatus is a Bioelectronic Tongue for detecting allergen in diluted food samples. The device includes: a sensor array; an impedance or capacitance analyzer; a preprocessor; a feature extractor; a pattern recognizer; and an output device indicating an allergen concentration. In order to implement the method of detecting food allergens on a bioelectronic tongue a computer readable medium containing an executable program is used for performing the analysis of a food sample. The executable program performs the acts of: preprocessing data from an impedance analyzer; extracting a feature pattern; recognizing a pattern of features of data representing a concentration of food allergen contained is the food sample; and outputs allergen concentration data.
Abstract:
The present invention is directed to a method and apparatus that satisfies the need for a bioelectronic tongue for food allergy detection. The method of detecting concentration of food allergen incorporates antibodies into an electronic tongue to create a bioelectronic tongue. Additionally the method uses impedance, capacitance, and/or other related electrochemical methods for detecting analyte in complex media. Furthermore the method additionally includes methods to subtract out non-specific interactions. The method also subtracts non-specific interactions. The device/apparatus is a Bioelectronic Tongue for detecting allergen in diluted food samples. The device includes: a sensor array; an impedance or capacitance analyzer; a preprocessor; a feature extractor; a pattern recognizer; and an output device indicating an allergen concentration. In order to implement the method of detecting food allergens on a bioelectronic tongue a computer readable medium containing an executable program is used for performing the analysis of a food sample. The executable program performs the acts of: preprocessing data from an impedance analyzer; extracting a feature pattern; recognizing a pattern of features of data representing a concentration of food allergen contained is the food sample; and outputs allergen concentration data.
Abstract:
Methods and apparatuses to power off a modem receiver or components of the receiver at a time prior to the end of the frame based on data in the frame being received and properly decoded before the end of the frame. In an aspect, the apparatuses and methods provide power saving in a wireless device, and include receiving data within a frame at a user equipment, determining whether all payload packet data has been correctly decoded prior to an end of the frame, and powering down a receiver component for a portion of a remainder of the frame in response to determining that all payload packet data has been correctly decoded and where a first time period to a next scheduled overhead bit transmission period of a slot in the frame is greater than a second time period corresponding to a warm-up period for the receiver component.
Abstract:
A method for producing reliable contacts in microelectronic devices and contacts produced thereby are provided. In one embodiment of the invention, a first conductive layer is formed over a first dielectric layer. The first conductive layer contains a pattern etched therein. A second dielectric layer is deposited over the first conductive layer and a via is etched therein over the pattern, thus exposing a portion of the pattern and the first conductive layer. The structure is then further etched to remove a portion of the first dielectric layer using the exposed portions of the first conductive layer as a mask. The structure is then subject to an isotropic etch to create undercuts in the first dielectric layer underneath the exposed portions of the first conductive layer. A conductive material can then be deposited into the via to fill the undercut, thus contacting the first conductive material on the exposed top, sides, and underside of the layer to produce a highly reliable contact. This technique is also adapted to create vias that are used to connect three or more conductive layers.