摘要:
A magnetic disk 10 for use in perpendicular magnetic recording, which includes an underlayer 18, a size-reduction promoting layer 20 (nonmagnetic granular layer) of a granular structure, and a magnetic recording layer 22 having a ferromagnetic layer 32 of a granular structure. The size-reduction promoting layer 20 has an inorganic oxide matrix and nonmagnetic metal crystal grains and is disposed between the underlayer 18 and the ferromagnetic layer 32, thereby reducing the size of magnetic crystal grains in the ferromagnetic layer 32.
摘要:
A magnetic disk 10 for use in perpendicular magnetic recording, which includes an underlayer 18, a size-reduction promoting layer 20 (nonmagnetic granular layer) of a granular structure, and a magnetic recording layer 22 having a ferromagnetic layer 32 of a granular structure. The size-reduction promoting layer 20 has an inorganic oxide matrix and nonmagnetic metal crystal grains and is disposed between the underlayer 18 and the ferromagnetic layer 32, thereby reducing the size of magnetic crystal grains in the ferromagnetic layer 32.
摘要:
A perpendicular magnetic recording medium comprising a pair of soft magnetic layers that are laminated via a non-magnetic layer and antiparallel-coupled to each other and that are provided between a non-magnetic substrate and a magnetic recording layer, wherein spike noise and medium noise can be positively suppressed when information recording and reproduction are carried out at high recording surface density. At least one pair of soft magnetic layers are laid and formed via a non-magnetic layer on a substrate of a non-magnetic material so that magnetic characteristics obtained by integrating the pair of soft magnetic layers have a magnetic hysteresis to thereby prevent the formation of a magnetic domain wall.
摘要:
A perpendicular magnetic recording medium comprising a pair of soft magnetic layers that are laminated via a non-magnetic layer and antiparallel-coupled to each other and that are provided between a non-magnetic substrate and a magnetic recording layer, wherein spike noise and medium noise can be positively suppressed when information recording and reproduction are carried out at high recording surface density. At least one pair of soft magnetic layers are laid and formed via a non-magnetic layer on a substrate of a non-magnetic material so that magnetic characteristics obtained by integrating the pair of soft magnetic layers have a magnetic hysteresis to thereby prevent the formation of a magnetic domain wall.
摘要:
To provide a perpendicular magnetic recording disk having a film structure that improves overwrite characteristics (O/W) while maintaining a coercive force (Hc) high enough not to affect heat fluctuation resistance, and a manufacturing method thereof.A magnetic disk for use in perpendicular magnetic recording, having at least an underlayer, a first magnetic recording layer, and a second magnetic recording layer on a substrate in the order named, characterized in that the first magnetic recording layer and the second magnetic recording layer are each a ferromagnetic layer of a granular structure containing a nonmagnetic substance forming grain boundary portions between crystal grains containing at least Co (cobalt) and, given that the content of the nonmagnetic substance in the first magnetic recording layer is A mol % and the content of the nonmagnetic substance in the second magnetic recording layer is B mol %, A
摘要:
A magnetic recording medium for perpendicular magnetic recording includes a substrate, a granular layer having magnetic crystal grains exhibiting perpendicular magnetic anisotropy and nonmagnetic substances for magnetically separating the magnetic crystal grains from each other at grain boundaries of the magnetic crystal grains, and a continuous film layer having magnetic grains to be exchange-coupled to the magnetic crystal grains, the grain boundary width of the magnetic grains being smaller than that of the magnetic crystal grains, wherein separation regions for magnetically separating tracks from each other are disposed in regions between the tracks of the magnetic recording medium in at least the continuous film layer.
摘要:
A magnetic disk 10 for use in perpendicular magnetic recording has at least a magnetic recording layer on a substrate 1. The magnetic recording layer is composed of a ferromagnetic layer 5 of a granular structure containing silicon (Si) or an oxide of silicon (Si) between crystal grains containing cobalt (Co), a stacked layer 7 having a first layer containing cobalt (Co) or a Co alloy and a second layer containing palladium (Pd) or platinum (Pt), and a spacer layer 6 interposed between the ferromagnetic layer 5 and the stacked layer 7. After forming the ferromagnetic layer 5 on the substrate 1 by sputtering in an argon gas atmosphere, the stacked layer 7 is formed by sputtering in the argon gas atmosphere at a gas pressure lower than that used when forming the ferromagnetic layer 5.
摘要:
A method for manufacturing a magnetic recording medium for perpendicular magnetic recording includes the steps of forming a first magnetic layer which has magnetic crystal grains exhibiting perpendicular magnetic anisotropy and nonmagnetic substances for magnetically separating the magnetic crystal grains from each other at grain boundaries of the magnetic crystal grains, forming a second magnetic layer which has magnetic grains exchange-coupled to the magnetic crystal grains, a grain boundary width of the magnetic grains being smaller than a grain boundary width of the magnetic crystal grains, and forming separation regions which magnetically separate tracks from each other in regions between the tracks of the magnetic recording medium in at least the second magnetic layer. The separation regions are disposed substantially only in the second magnetic layer of the first magnetic layer and the second magnetic layer.
摘要:
A method for manufacturing a magnetic recording medium includes the steps of (a) forming a perpendicular magnetic recording layer and (b) applying an ion beam to regions between tracks of the perpendicular magnetic recording layer so as to form separation regions for magnetically separating the tracks from each other. In the step (a), a continuous film layer composed of a multilayer film is formed, and CoB layers and Pd layers are laminated in the multilayer film. In the step (b), the CoB layers and the Pd layers are melted by the ion beam so as to form an alloy of metals contained in the CoB layers and the Pd layers to thereby form the separation regions.
摘要:
A magnetic disk 10 for use in perpendicular magnetic recording has at least a magnetic recording layer on a substrate 1. The magnetic recording layer is composed of a ferromagnetic layer 5 of a granular structure containing silicon (Si) or an oxide of silicon (Si) between crystal grains containing cobalt (Co), a stacked layer 7 having a first layer containing cobalt (Co) or a Co alloy and a second layer containing palladium (Pd) or platinum (Pt), and a spacer layer 6 interposed between the ferromagnetic layer 5 and the stacked layer 7. After forming the ferromagnetic layer 5 on the substrate 1 by sputtering in an argon gas atmosphere, the stacked layer 7 is formed by sputtering in the argon gas atmosphere at a gas pressure lower than that used when forming the ferromagnetic layer 5.