摘要:
A method for manufacturing a magnetic recording medium includes the steps of (a) forming a perpendicular magnetic recording layer and (b) applying an ion beam to regions between tracks of the perpendicular magnetic recording layer so as to form separation regions for magnetically separating the tracks from each other. In the step (a), a continuous film layer composed of a multilayer film is formed, and CoB layers and Pd layers are laminated in the multilayer film. In the step (b), the CoB layers and the Pd layers are melted by the ion beam so as to form an alloy of metals contained in the CoB layers and the Pd layers to thereby form the separation regions.
摘要:
A method for manufacturing a magnetic recording medium for perpendicular magnetic recording includes the steps of forming a first magnetic layer which has magnetic crystal grains exhibiting perpendicular magnetic anisotropy and nonmagnetic substances for magnetically separating the magnetic crystal grains from each other at grain boundaries of the magnetic crystal grains, forming a second magnetic layer which has magnetic grains exchange-coupled to the magnetic crystal grains, a grain boundary width of the magnetic grains being smaller than a grain boundary width of the magnetic crystal grains, and forming separation regions which magnetically separate tracks from each other in regions between the tracks of the magnetic recording medium in at least the second magnetic layer. The separation regions are disposed substantially only in the second magnetic layer of the first magnetic layer and the second magnetic layer.
摘要:
A magnetic recording medium for perpendicular magnetic recording includes a substrate, a granular layer having magnetic crystal grains exhibiting perpendicular magnetic anisotropy and nonmagnetic substances for magnetically separating the magnetic crystal grains from each other at grain boundaries of the magnetic crystal grains, and a continuous film layer having magnetic grains to be exchange-coupled to the magnetic crystal grains, the grain boundary width of the magnetic grains being smaller than that of the magnetic crystal grains, wherein separation regions for magnetically separating tracks from each other are disposed in regions between the tracks of the magnetic recording medium in at least the continuous film layer.
摘要:
[PROBLEMS] To improve the track density by reducing the track edge noise and sharpening the boundaries of a recording magnetic field by blocking the recording magnetic field spreading outside the recording region in magnetic recording.[MEANS FOR SOLVING PROBLEMS] A magnetic recording medium (10) has a substrate (12) and a perpendicular magnetic recording layer (30) formed over the substrate (12). The perpendicular magnetic recording layer (30) has a granular layer (20) in which a magnetic signal is recorded and a continuous film layer (24) magnetically coupled to the granular layer (20). The continuous film layer (24) has hard magnetic portions (204) formed in positions corresponding to the recording regions where magnetic signals are recorded in the granular layer (20) and magnetic shield portions (202) formed between the hard magnetic portions (204), each having a magnetization curve whose slope is larger than those of the hard magnetic portions in the region where the applied magnetic filed is zero when the magnetization curve is measured, and each having a residual magnetic polarization smaller than those in the hard magnetic portions.
摘要:
A magnetic recording medium (10) has a substrate (12) and a perpendicular magnetic recording layer (30) formed over the substrate (12). The perpendicular magnetic recording layer (30) has a granular layer (20) in which a magnetic signal is recorded and a continuous film layer (24) magnetically coupled to the granular layer (20). The continuous film layer (24) has hard magnetic portions (204) formed in positions corresponding to the recording regions where magnetic signals are recorded in the granular layer (20) and magnetic shield portions (202) formed between the hard magnetic portions (204), each having a magnetization curve whose slope is larger than those of the hard magnetic portions in the region where the applied magnetic filed is zero when the magnetization curve is measured, and each having a residual magnetic polarization smaller than those in the hard magnetic portions.
摘要:
A planarization process may planarize a media disk that has data trenches between data features and larger servo trenches between servo features. A filler material layer is deposited on the media disk and provides step coverage of the trenches. The filler material has data recesses over the data trenches and servo recesses over the servo trenches that must be removed to produce a planar media surface. A first planarization process is used to remove the data recesses and a second planarization process is used to remove the servo recesses.
摘要:
A method of fabricating a patterned perpendicular magnetic recording medium comprises steps of: (a) providing a layer stack including a magnetically soft underlayer (“SUL”) and an overlying non-magnetic interlayer; (b) forming a masking layer on the non-magnetic interlayer; (c) forming a resist layer on the masking layer; (d) forming a pattern of recesses extending through the resist layer and exposing spaced apart surface portions of the masking layer; (e) extending the pattern of recesses through the masking layer to expose spaced apart surface portions of the interlayer; and (f) at least partially filling the pattern of recesses with a magnetically hard material to form a perpendicular magnetic recording layer.
摘要:
A method of imprint lithography includes imprinting a first pattern with a first template on a first substrate of a lithographic template. A second pattern is imprinted with a second template on the substrate of the lithographic template. The first pattern and the second pattern at least partially overlap, thus forming a third pattern. The third pattern is lithographically formed on a second substrate with the lithographic template. In an embodiment, the first pattern is a concentric line pattern formed by thin film deposition. In an embodiment, the second pattern is a radial line pattern. In an embodiment the first pattern and the second pattern may have line frequency increased.
摘要:
Producing a servo pattern on a media involves rotating a master, and during a first revolution of the master, forming a first transition at a first radial position on the master, and forming a first transition at a second radial position. During a second revolution of the master, a second transition at the first radial position is formed, and a second transition at the second radial position is formed. By exposing individual servo burst transitions located at the first and second radial positions, in separate disk revolutions, only one of the magnetic transitions will inherit a particular deflection from a nominal radial position. If there are any mechanical disturbances, each magnetic transition will be randomly displaced from its nominal position, reducing the written-in run-out by √n, where n is the number of magnetic transitions in a particular servo burst.
摘要:
A method of fabricating a patterned magnetic layer comprises sequential steps of:(a) providing a workpiece comprising a non-magnetic substrate, a layer of magnetic material overlying a surface of the substrate, and a layer of a non-magnetic material overlying the layer of magnetic material;(b) forming a layer of a mask material on the layer of non-magnetic material;(c) forming a topographical pattern comprising a plurality of recesses in the layer of mask material;(d) selectively removing portions of the layer of non-magnetic material proximate lower portions of the recesses, thereby exposing selected portions of the layer of magnetic material;(e) treating the exposed portions of the layer of magnetic material with a liquid for reducing the magnetic properties thereof; and(f) removing the topographically patterned layer of mask material.