摘要:
A semiconductor device having an electrode with reduced electrical contact resistance even where either electrons or holes are majority carriers is disclosed. This device has an n-type diffusion layer and a p-type diffusion layer in a top surface of a semiconductor substrate. The device also has first and second metal wires patterned to overlie the n-type and p-type diffusion layers, respectively, with a dielectric layer interposed therebetween, a first contact electrode for electrical connection between the n-type diffusion layer and the first metal wire, and a second contact electrode for connection between the p-type diffusion layer and the second metal wire. The first contact electrode's portion in contact with the n-type diffusion layer and the second contact electrode's portion contacted with the p-type diffusion layer are each formed of a first conductor that contains a metal and a second conductor containing a rare earth metal.
摘要:
A semiconductor device having an electrode with reduced electrical contact resistance even where either electrons or holes are majority carriers is disclosed. This device has an n-type diffusion layer and a p-type diffusion layer in a top surface of a semiconductor substrate. The device also has first and second metal wires patterned to overlie the n-type and p-type diffusion layers, respectively, with a dielectric layer interposed therebetween, a first contact electrode for electrical connection between the n-type diffusion layer and the first metal wire, and a second contact electrode for connection between the p-type diffusion layer and the second metal wire. The first contact electrode's portion in contact with the n-type diffusion layer and the second contact electrode's portion contacted with the p-type diffusion layer are each formed of a first conductor that contains a metal and a second conductor containing a rare earth metal.
摘要:
Described herein is a method of manufacturing a semiconductor device realizing higher performance by reducing contact resistance of an electrode. In the method, a gate insulating film, a gate electrode are formed on a semiconductor substrate. A first metal is deposited substrate, and a metal semiconductor compound layer is formed on the surface of the semiconductor substrate by making the first metal and the semiconductor substrate react each other by a first heat treatment. Ions having a mass equal to or larger than atomic weight of Si are implanted into the metal semiconductor compound layer. A second metal is deposited on the metal semiconductor compound layer. An interface layer is formed by making the second metal segregated at an interface between the metal semiconductor compound layer and the semiconductor substrate by diffusing the second metal through the metal semiconductor compound layer by a second heat treatment.
摘要:
A method of manufacturing a semiconductor device reducing interface resistance of n-type and p-type MISFETs are provided. According to the method, a gate dielectric film and a gate electrode of the n-type MISFET are formed on a first semiconductor region, a gate dielectric film and a gate electrode of the p-type MISFET are formed on a second semiconductor region, an n-type diffusion layer is formed by ion implantation of As into the first semiconductor region, a first silicide layer is formed by first heat treatment after a first metal containing Ni is deposited on the n-type diffusion layer, the first silicide layer is made thicker by second heat treatment after a second metal containing Ni is deposited on the first silicide layer and second semiconductor region, and third heat treatment is provided after formation of a second silicide layer and ion implantation of B or Mg into the second silicide layer.
摘要:
Described herein is a method of manufacturing a semiconductor device realizing higher performance by reducing contact resistance of an electrode. In the method, a gate insulating film, a gate electrode are formed on a semiconductor substrate. A first metal is deposited substrate, and a metal semiconductor compound layer is formed on the surface of the semiconductor substrate by making the first metal and the semiconductor substrate react each other by a first heat treatment. Ions having a mass equal to or larger than atomic weight of Si are implanted into the metal semiconductor compound layer. A second metal is deposited on the metal semiconductor compound layer. An interface layer is formed by making the second metal segregated at an interface between the metal semiconductor compound layer and the semiconductor substrate by diffusing the second metal through the metal semiconductor compound layer by a second heat treatment.
摘要:
A metal insulator semiconductor field effect transistor (MISFET) having a strained channel region is disclosed. Also disclosed is a method of fabricating a semiconductor device having a low-resistance junction interface. This fabrication method includes the step of forming a gate electrode above a silicon substrate with a gate insulator film being sandwiched therebetween. Then, form a pair of heavily-doped p (p+) type diffusion layers in or on the substrate surface at both sides of the gate electrode to a concentration of 5×1019 atoms/cm3 or more and yet less than or equal to 1×1021 atoms/cm3. Next, silicidize the p+-type layers by reaction with a metal in the state that each layer is applied a compressive strain.
摘要翻译:公开了具有应变通道区域的金属绝缘体半导体场效应晶体管(MISFET)。 还公开了一种制造具有低电阻结界面的半导体器件的方法。 该制造方法包括在硅衬底上形成栅电极的步骤,其间夹有栅绝缘膜。 然后,在栅极两侧的衬底表面中或其上形成一对重掺杂的p(p + SUP +)型扩散层,使其浓度达到5×10 19 原子/ cm 3以上且小于或等于1×10 21原子/ cm 3。 接下来,在各层施加压缩应变的状态下,通过与金属反应来硅化p + + +层。
摘要:
A metal insulator semiconductor field effect transistor (MISFET) having a strained channel region is disclosed. Also disclosed is a method of fabricating a semiconductor device having a low-resistance junction interface. This fabrication method includes the step of forming a gate electrode above a silicon substrate with a gate insulator film being sandwiched therebetween. Then, form a pair of heavily-doped p (p+) type diffusion layers in or on the substrate surface at both sides of the gate electrode to a concentration of 5×1019 atoms/cm3 or more and yet less than or equal to 1×1021 atoms/cm3. Next, silicidize the p+-type layers by reaction with a metal in the state that each layer is applied a compressive strain.
摘要:
It is made possible to reduce the interface resistance at the interface between the nickel silicide film and the silicon. A semiconductor manufacturing method includes: forming an impurity region on a silicon substrate, with impurities being introduced into the impurity region; depositing a Ni layer so as to cover the impurity region; changing the surface of the impurity region into a NiSi2 layer through annealing; forming a Ni layer on the NiSi2 layer; and silicidating the NiSi2 layer through annealing.
摘要:
It is made possible to reduce the interface resistance at the interface between the nickel silicide film and the silicon. A semiconductor manufacturing method includes: forming an impurity region on a silicon substrate, with impurities being introduced into the impurity region; depositing a Ni layer so as to cover the impurity region; changing the surface of the impurity region into a NiSi2 layer through annealing; forming a Ni layer on the NiSi2 layer; and silicidating the NiSi2 layer through annealing.
摘要:
It is made possible to reduce the interface resistance at the interface between the nickel silicide film and the silicon. A semiconductor manufacturing method includes: forming an impurity region on a silicon substrate, with impurities being introduced into the impurity region; depositing a Ni layer so as to cover the impurity region; changing the surface of the impurity region into a NiSi2 layer through annealing; forming a Ni layer on the NiSi2 layer; and silicidating the NiSi2 layer through annealing.