摘要:
An ultrasonic-wave propagation time measuring method which enables determination of accurate propagation time, a gas-pressure measuring method, a gas-flow-rate measuring method, and a gas sensor. A reception wave which has been transmitted and received by an ultrasonic element 5 is shaped and integrated by an integration circuit 67 to obtain an integral value. A peak value of the integral value is held by a peak-hold circuit 39. As to detection of gas concentration, a resistance-voltage-division circuit 41 sets a reference value on the basis of the peak value, and a point in time when the integral value of the reception wave is judged by a comparator 43 to have reached the reference value is regarded as an arrival time. Subsequently, a gas concentration is detected on the basis of a period between the emission time and the arrival time. As to detection of gas pressure and flow rate, the gas pressure is detected on the basis of the peak value, and further, the gas flow rate is calculated on the basis of the gas pressure.
摘要:
An ultrasonic-wave propagation-time measuring method and gas concentration sensor are disclosed in which a reception wave which has been transmitted and received by an ultrasonic element 5 is subjected to full-wave rectification in order to obtain a full-wave-rectified wave, which is then integrated by an integration circuit 37 to obtain an integral value. A peak value of the integral value is held by a peak-hold circuit 39. As to detection of gas concentration, a threshold-level calculation section 21e sets a reference value on the basis of the peak value, and a point in time when the amplitude of a reception wave having undergone full-wave rectification is judged by a comparator 43 to have reached the reference value is regarded as an arrival time. Subsequently, a gas concentration is determined on the basis of a period between the emission time and the arrival time.
摘要:
A gas concentration sensor comprises an ultrasonic element 33 opposite a reflection surface 34. A depression 34a is formed on an edge portion of a reflection surface 34 which is in contact with a side wall of a measurement chamber 32 such that a bottom surface of the depression 34a is substantially in parallel with the reflection surface 34. The distance between the ultrasonic element 33 and the edge portion of the reflection surface 34 becomes greater than the distance between the ultrasonic element 33 and a central portion of the reflection surface 34. As a result, an indirect wave, which impinges obliquely on the side wall of the measurement chamber 32 and propagates along the side wall, is reflected from the bottom surface of the depression 34a and propagates. Thus, the propagation distance of this indirect wave becomes greater as compared to the case where the reflection surface 34 is flat, so that the indirect wave is not combined with a direct wave in the vicinity of a modulation point of the direct wave. That is, since the modulation point of the direct wave can be detected accurately, a time interval between a modulation point of a transmitted wave and that of a received wave can be measured as the propagation time of an ultrasonic wave, thereby enabling accurate determination of gas concentration.
摘要:
A detecting-element assembly (40) is configured such that a piezoelectric element (51) is housed in a casing body portion (43) of a casing (42), and is attached to a housing portion (22) of a flow path formation member (20) via a flange portion (41). Therefore, the path between the piezoelectric element (51) and the position of attachment of the detecting-element assembly (40) is elongated, whereby ultrasonic waves which leak into the interior of the detecting-element assembly (40) from the piezoelectric element (51) become unlikely to reflectively return from a joint. Thus, the influence of, for example, noise stemming from reflected waves is reduced, thereby enhancing the accuracy of detection. An average clearance of 1 millimeter or more is provided along the outer circumferential surface of the casing body portion (43) of the detecting-element assembly (40), whereby a problem of collected foreign matter is unlikely to occur.
摘要:
When a sensor has deteriorated, the propagation time T1′ of a first reflection wave becomes greater than the propagation time T1 of a first reflection wave as measured in a new sensor. If measurement of the concentration of a specific gas is based on the propagation time T1 of the first reflection wave as measured in the new sensor, gas concentration cannot be determined accurately. By contrast, a reflection wave other than the first reflection wave (for example, a second reflection wave) is merely reflected off the surface of the ultrasonic element and is not affected by the internal structure of the ultrasonic element. Therefore, even when the sensor is deteriorated, the propagation time T2, T2′ of the second reflection wave exhibits less variation and is less susceptible to deterioration of the sensor. Therefore, the concentration of a specific gas is determined on the basis of the propagation time of the second reflection wave, which is less susceptible to deterioration of the sensor, instead of the propagation time of the first reflection wave, which is more susceptible to deterioration of the sensor. Thus, gas concentration can be measured accurately.
摘要:
The present invention provides a method and apparatus using a gas concentration sensor for accurately controlling an air fuel ratio in an internal combustion engine, featuring in that before the fuel-vaporized gas purged from the canister enters into the intake manifold whereat the sensor detects the gas concentration of the purged gas, the sensor is adjusted so as to adjust a zero point (or zero output level) of the sensor output. In step 100 of FIG. 7, a judgment is made as to whether the flow rate of air reaches a predetermined level. In step 110, processing for zero-point correction of the gas concentration sensor is performed. Specifically, in a state in which the purge valve 17 is closed, concentration of purge gas is measured by use of the gas concentration sensor 4, and a sensor output S1 at that time is obtained. Subsequently, the sensor output S1 is compared with a correct sensor output S0 in order to obtain a difference &Dgr;S therebetween. Accordingly, during subsequent gas concentration measurement, a value S3 obtained through subtraction of the difference &Dgr;S from an obtained sensor output S2 is used as a correct sensor output. In step 120, a supply amount of purge gas, i.e., a concentration of the purge gas to be supplied is obtained. In subsequent step 130, the purge valve 17 is driven in order to supply purge gas to the intake pipe 2 in a required amount (A%).
摘要:
Method and sensor for measuring accurate measurement of NOx concentration in an exhaust gas containing O2,H2O, CO2 and NOx and a NOx gas concentration sensor. A first oxygen pump cell sufficiently pumps out oxygen in a measurement gas such as not to decompose NOx. A pair of electrodes is provided on an inner side and an outer side of a second measurement chamber into which the gas is introduced from a first measurement chamber via a diffusion resistance. A voltage is impressed across the paired electrodes for decomposing NOx in the second measurement chamber to dissociate oxygen which causes the current to flow in a second oxygen ion pump cell. The NOx gas concentration is measured for this current. The voltage impressed across the paired electrodes of the second oxygen ion pump cell is set so as not to dissociate H2O and CO2 present in the second measurement chamber.
摘要:
A method for detecting the concentration of a specific gas (NOx) in an engine exhaust gas using a gas sensor and a process of correcting the gas sensor. According to the correcting process, the amount of moisture in the exhaust gas is estimated, then a a gas concentration detection signal output by the gas sensor on the basis of an estimated amount of moisture is corrected. Finally, the effect of the amount of moisture in the exhaust gas is removed or reduced from the detected value of gas concentration.
摘要:
A nitrogen oxide concentration detector has a first measurement chamber 2 into which is introduced a measurement gas via a first diffusion resistance 1; an oxygen concentration detection electrode 7a for measuring the oxygen concentration in the measurement gas in said first measurement chamber 1; a first oxygen ion pump cell 6 for pumping out oxygen in the measurement gas from said first measurement chamber 2 based on the potential of said oxygen concentration detection electrode 7a; a second measurement chamber 8 into which the gas is introduced from said first measurement chamber 2 via a second diffusion resistance 3; and a second oxygen ion pump cell 8 having a pair of electrodes 8a,8b across which a voltage is applied to decompose NOx in the second measurement chamber 4 to pump out dissociated oxygen to cause a circuit Ip2 corresponding to the NOx concentration to flow in the second oxygen ion pump cell 8. Variation of NOx concentration is a function of variation of Ip2. The concentration obtained based on the Ip2 is corrected responsive to the oxygen concentration in the measurement gas. Particularly, a coefficient of the variation of the Ip2, gain, in said function is corrected responsive to the oxygen concentration in the measurement gas.
摘要:
A method for detecting the concentration of a specific component in gas discharged from an internal combustion engine, which includes detecting the concentration of the specific component under certain driving conditions to determine a zero point, which indicates a zero concentration of the specific component, of the detection output; calibrating the detection output of the gas sensor based on the determined zero point; and detecting the concentration of the specific component in exhaust gas based on the calibrated detection output.