摘要:
A needle meter includes a display device, an indication arrangement, a needle, a first illumination member, a second illumination member, a circuit board, and a movement. The first illumination member illuminates the display device. The second illumination member illuminates the indication arrangement. The circuit board is provided at an opposite side of the display device opposite the reference face of the display device. The needle includes a hub portion, an arm portion, and a pointer portion such that the needle has a generally U-shape and is integrally molded of a translucent resin. The display device, the indication arrangement, the first illumination member, and the second illumination member are integrally received and supported by a bracket to constitute a display unit. The display unit is provided between the pointer portion and the arm portion of the needle in a direction for observing the reference face of the display device.
摘要:
A needle meter includes a display device, an indication arrangement, a needle, a first illumination member, a second illumination member, a circuit board, and a movement. The first illumination member illuminates the display device. The second illumination member illuminates the indication arrangement. The circuit board is provided at an opposite side of the display device opposite the reference face of the display device. The needle includes a hub portion, an arm portion, and a pointer portion such that the needle has a generally U-shape and is integrally molded of a translucent resin. The display device, the indication arrangement, the first illumination member, and the second illumination member are integrally received and supported by a bracket to constitute a display unit. The display unit is provided between the pointer portion and the arm portion of the needle in a direction for observing the reference face of the display device.
摘要:
A display device for a vehicle has a first display unit constructed of a liquid crystal display for displaying first information and a second display unit including a display portion for displaying second information. The second information is illuminated by receiving light emitted from a light source and displayed at an intensity higher than an intensity of a background area that is illuminated by receiving light emitted from another light source. An optical coloring member is disposed such that an illuminating color and a brightness of the background area of the second display unit are substantially equal to those of a background area of the first information of the liquid crystal display.
摘要:
A display device for a vehicle has a first display unit constructed of a liquid crystal display for displaying first information and a second display unit including a display portion for displaying second information. The second information is illuminated by receiving light emitted from a light source and displayed at an intensity higher than an intensity of a background area that is illuminated by receiving light emitted from another light source. An optical coloring member is disposed such that an illuminating color and a brightness of the background area of the second display unit are substantially equal to those of a background area of the first information of the liquid crystal display.
摘要:
An instrumental dial has a plurality of grooves defined in a front surface thereof. Each groove has a pair of side surfaces each comprising a pair of flat surfaces. The flat surface is closer to a rear surface of the instrumental dial than the flat surface. The flat surfaces are inclined by different angles θ1, θ2, respectively, to the direction in which the dial is visually recognized. The angles θ1, θ2 satisfy the relationship of θ1>θ2. The number of times that incoming light is reflected in the groove is increased to greatly reduce the amount of light that leaves the groove and also to disperse outgoing light in various directions. The instrumental dial thus has a novel look provided by a spinning pattern, and has a reduced reflectance for good visibility.
摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121) and semiconductor layers (122, 123) disposed on the conductor (121); a counter electrode (130) connected electrically to the conductor (121); an electrolyte (140) in contact with surfaces of the semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). A band edge level ECS of a conduction band, a band edge level EVS of a valence band, and a Fermi level EFS in a surface near-field region of the semiconductor layer, and a band edge level ECJ of a conduction band, a band edge level EVJ of a valence band, and a Fermi level EFJ in a junction plane near-field region of the semiconductor layer with the conductor satisfy, relative to a vacuum level, ECS-EFS>ECJ-EFJ, EFS-EVS −4.44 eV, and EVS
摘要:
An injection needle master is manufactured (S1), the injection needle master is mounted on a master receiving holder (S2), an electroforming metal is adhered to the injection needle master by an electroforming treatment (S3) and, finally, the injection needle master is pulled from an electroforming tank together with the master receiving holder whereupon the electroforming body, which constitutes the injection needle main body, is released from the injection needle master (S4). The manufactured injection needle comprises a tapered portion in which the outer diameter of the puncture tip-end portion is about 0.12 mm and in which the outer diameter narrows between the base-end portion and the puncture tip-end portion.
摘要:
The method for producing the optical semiconductor of the present disclosure includes a mixing step of producing a mixture containing a reduction inhibitor and a niobium compound that contains at least oxygen in its composition; a nitriding step of nitriding the mixture by the reaction between the mixture and a nitrogen compound gas; and a washing step of isolating niobium oxynitride from the material obtained through the nitriding step by dissolving chemical species other than niobium oxynitride with a washing liquid. The optical semiconductor of the present disclosure substantially consists of niobium oxynitride having a crystal structure of baddeleyite and having a composition represented by the composition formula, NbON.
摘要:
The hydrogen production device of the present invention includes: a first electrode (120) including a conductive substrate (101) and a photocatalytic semiconductor layer (102); a second electrode (103) that is electrically connected to the first electrode (120) and disposed in a second region (123) opposite to a first region (122) relative to the first electrode (120), when the first region (122) is defined as a region on a side of a surface of the first electrode (120) in which the photocatalytic semiconductor layer (102) is provided; a water-containing electrolyte solution (106); and a housing (105) containing these. The first electrode (120) is provided with a through-hole (131) at a position and the second electrode (103) is provided with a through-hole (132) at a position corresponding to the position, and the through-holes form a communicating hole (130) for allowing the first region (122) and the second region (123) to communicate with each other. An ion exchange membrane (104) having substantially the same shape as the communicating hole (130) is disposed in the communicating hole (130) to close the communicating hole (130).
摘要:
It is provided with a light source unit that can be thinner. Further, it is provided with a lighting apparatus and a notice bearing apparatus utilizing the light source unit.A light source unit 10 is configured with a plurality of LED modules 3, 3 and a constant current supplying section 2 consisting of electric components for holding constant of current supplied to the plurality of LED modules 3, 3. The plurality of LED modules 3, 3 and the electric components are aligned on a rectangular plate 11 of a module casing 1. Thus, it is possible to manufacture the light source unit 10 to be thinner. The electric components are arranged between the plurality of LED modules 3, 3. Thus, it is possible to reduce cable length installed in the light source unit 10 and to facilitate the installing works of the cable.