摘要:
A magnetic recording medium has a recording layer (42) formed over the substrate. The recording layer is structured by a nonmagnetic base, and a plurality of magnetic dots formed in the nonmagnetic base. The magnetic dots are aligned in a prescribed direction in each track or each group of adjacent tracks of the magnetic recording medium. In a preferred example, the magnetic dots align in a direction tilting at a prescribed angle with respect to the width of the track.
摘要:
A nanohole structure includes a metallic matrix and nanoholes arrayed regularly in the metallic matrix, in which the nanoholes are spaced in rows at specific intervals to constitute rows of nanoholes. The rows of nanoholes are preferably arranged concentrically or helically. The nanoholes in adjacent rows of nanoholes are preferably arranged in a radial direction. The width of each row of nanoholes preferably varies at specific intervals in its longitudinal direction. A magnetic recording medium includes a substrate, and a porous layer on or above the substrate. The porous layer contains nanoholes each extending in a direction substantially perpendicular to a substrate plane, containing at least one magnetic material therein, and is the above-mentioned nanohole structure.
摘要:
A method for manufacturing a magnetic recording medium which has a substrate and a magnetic layer formed on the substrate, the method including: forming the magnetic layer over a convexo-concave pattern provided on a surface of a mold, and releasing the mold from the magnetic layer formed on the substrate.
摘要:
To provide a magnetic recording medium manufacturing method capable of transferring a pattern that can serve as a source for forming anodized alumina-nanoholes with high precision and realizing high productivity, and a large-capacity magnetic recording medium capable of achieving high density recording. The method includes forming a metallic layer on a concavo-convex pattern formed on a surface of a mold; bonding a substrate using an adhesive to a surface of the metallic layer on the side opposite to the mold; separating the mold from the metallic layer; forming, through nanohole formation treatment, a porous layer in which a plurality of nanoholes are formed to orient in a direction substantially perpendicular to a substrate plane by using as a nanohole source a concavo-convex pattern which has been formed by transferring the concavo-convex pattern in the mold to the metallic layer; and charging a magnetic material inside the nanoholes.
摘要:
A nanohole structure includes a metallic matrix and nanoholes arrayed regularly in the metallic matrix, in which the nanoholes are spaced in rows at specific intervals to constitute rows of nanoholes. The rows of nanoholes are preferably arranged concentrically or helically. The nanoholes in adjacent rows of nanoholes are preferably arranged in a radial direction. The width of each row of nanoholes preferably varies at specific intervals in its longitudinal direction. A magnetic recording medium includes a substrate, and a porous layer on or above the substrate. The porous layer contains nanoholes each extending in a direction substantially perpendicular to a substrate plane, containing at least one magnetic material therein, and is the above-mentioned nanohole structure.
摘要:
A carbon nanotube composite material contains a carbon nanotube and a continuous layer of a metal covering the inner surface of the carbon nanotube. It is produced by forming a metallic matrix layer and treating the metallic matrix layer to form plural nanoholes in the metallic matrix layer to thereby form a nanohole structure, the nanoholes extending in a direction substantially perpendicular to the plane of the metallic matrix layer; forming carbon nanotubes inside the nanoholes; and covering inner surfaces of the carbon nanotubes with a continuous layer of a metal. It has a well controlled small size, has excellent and uniform physical properties, is resistant to oxidation of the metal with time, is highly chemically stable, has good durability enabling repetitive use, has good coatability, high wettability and dispersibility with other materials, is easily chemically modified, is easily handled and is useful in various fields.
摘要:
A carbon nanotube composite material contains a carbon nanotube and a continuous layer of a metal covering the inner surface of the carbon nanotube. It is produced by forming a metallic matrix layer and treating the metallic matrix layer to form plural nanoholes in the metallic matrix layer to thereby form a nanohole structure, the nanoholes extending in a direction substantially perpendicular to the plane of the metallic matrix layer; forming carbon nanotubes inside the nanoholes; and covering inner surfaces of the carbon nanotubes with a continous layer of a metal. It has a well controlled small size, has excellent and uniform physical properties, is resistant to oxidation of the metal with time, is highly chemically stable, has good durability enabling repetitive use, has good coatability, high wettability and dispersibility with other materials, is easily chemically modified, is easily handled and is useful in various fields.
摘要:
The object of the present is to provide high-quality magnetic recording media capable of easy tracking, and allowing high-density recording, high-speed recording, and higher capacity without increasing the write-current at magnetic heads. The nanohole structure comprises a metal or metal-compound base material and plural arrays of nanoholes, wherein the plural arrays of nanoholes are respectively arranged into regular alignments, the regular alignments are different between adjacent arrays, and the regular alignments are alternately disposed within the metal or metal-compound base material. The magnetic recording medium according to the present invention comprises a substrate, a porous layer into which plural nanoholes are formed, and a magnetic material within the plural nanoholes, wherein the plural nanoholes are formed in a direction approximately vertical to the plane of the substrate, the porous layer is a nanohole structure according to the present invention.
摘要:
An information processing apparatus obtains a distance that an input pen is moved in terms of the number of dots covered on a display screen, and from that number, judges whether a pen stroke is a gesture entry or a pointing entry. When the input pen is moved over more than a predetermined number of dots, e.g., eight dots, gesture recognition processing is performed. If the input pen is moved less than that number of dots, a pointing instruction is recognized, and pointing processing is performed. If a gesture is recognized, a recognized gesture editing command and a feature point of the gesture command are stored in RAM. Since an input by the input pen is judged a gesture entry or a pointing entry according to the number of dots over which the input pen is moved, a switch is not required to change data/instruction entry modes which reduces cost and improves handling.
摘要:
A method of measuring the number of times of a specific behavior of an animal in a breeding cage comprising a step in which a common pattern of the specific behavior is determined by receiving a signal of vibration of the cage caused by the specific behavior of the animal and extracting the feature of a frequency component of the signal, a step in which a measurement objective pattern is determined in the same way, and a step in which the common patterns in the measurement objective patterns is counted; a device for the measurement including means for detecting the vibration of the breeding cage, means for extracting the feature of the frequency component, and means for counting the common patterns in the measurement objective patterns; and a method for measuring the specific behavior such as a scratching of a small animal, e.g., a mouse in a breeding cage noninvasively, and an automatic measuring instrument.