摘要:
A component mounting apparatus having a suction nozzle movable with a component held attracted thereto to mount the component in a mounting position on a board comprises a CCD camera for taking images of the component and the mounting position obliquely from above when the suction nozzle has been brought to above the mounting position with the component held attracted thereto, an image processing circuit for calculating the deviation of the position of the component relative to the mounting position based on image signals from the camera, and a control circuit for correcting the position of the component by moving the suction nozzle in a horizontal plane in accordance with the calculated deviation.
摘要:
An apparatus for mounting electronic components on the surface of printed boards by a suction head assembly 4 coupled to a head lift mechanism comprises a force sensor 6 for measuring the pressure exerted on the component by a mounting operation, and a microcomputer 1 for preparing a control signal in accordance with the deviation of the value measured by the force sensor from a desired value of pressure on the component. The rotation of a head lifting motor 51 is controlled based on the control signal.
摘要:
In an external force measuring system comprising a piezoelectric element 61or producing a charge when acted on by an external force, and a charge amplifier 7 chargeable with a variation in the charge produced by the piezoelectric element to output a voltage signal, the charge amplifier 7 comprises a feedback loop having an on-off controllable switch 8 connected in parallel therewith. The switch 8 is on-off controlled by a comparator 81 for comparing the output voltage with a reference value and is closed while no external force acts on the element.
摘要:
To prevent a step-out of a permanent magnet synchronous type motor (1), a motor control device (3a) is provided to include a flux control unit (16) for deriving an excitation current command value (iγ*) according to the rotation speed (ωe) of the motor, and a voltage shortage determination unit (30) for determining whether or not the supply voltage to the motor is running short based on the excitation current command value (iγ*). When a negative excitation current command value (iγ*) is smaller than a negative determination threshold value, the motor control device determines that the supply voltage is running short and prohibits an increase of the rotation speed or decreases the rotation speed.
摘要:
Let the rotating axis whose direction coincides with the direction of the current vector that achieves maximum torque control be called the qm-axis, and the rotating axis perpendicular to the qm-axis be called the dm-axis. A motor control device switches its operation between low-speed sensorless control and high-speed sensorless control according to the rotation speed of the rotor. In low-speed sensorless control, the magnetic salient pole of the motor is exploited, and the d-q axes are estimated by, for example, injection of a high-frequency rotating voltage. In high-speed sensorless control, the dm-qm axes are estimated based on, for example, the induction voltage produced by the rotation of the rotor. During high-speed sensorless control, the γ(dm)-axis current is kept at zero irrespective of the δ(qm)-axis current.
摘要:
In a motor driving control device, a high-frequency alternating voltage or rotation voltage (having a frequency of ωh) is applied to a motor so that magnetic saturation occurs in the motor, thereby extracting, from a γ-axis current, a high-frequency second-harmonic component (a frequency component of 2×ωh) that is obtained by attenuating at least a direct-current component of the γ-axis current. The polarity checker detects the polarity of the magnetic pole of the rotor based on the difference, caused by magnetic saturation, between the positive and negative amplitudes of the high-frequency second-harmonic component.
摘要:
A motor control device includes an estimator for estimating a rotor position of a motor having a salient pole by using a value corresponding to a q-axis inductance of the motor as an operation parameter where an estimated axes for the control corresponding to d-q axes are γ-δ axes, and a controller for controlling the motor based on the estimated rotor position. The estimator generates a deviation between a d-axis and a γ-axis by performing the estimation of the rotor position based on a value between a real q-axis inductance and a real d-axis inductance of the motor adopted as the operation parameter. The controller controls the motor so that a γ-axis component of a motor current supplied to the motor is maintained to be a predetermined value of zero or close to zero regardless of a value of a δ-axis component of the motor current.
摘要:
The motor control device includes a current detecting portion for detecting a phase current that flows in an armature winding of a stator of a three-phase motor based on current that flows between an inverter for driving the motor and a DC power supply. The motor control device performs a position sensorless vector control for the motor based on a control current that is obtained by a three-phase to two-phase conversion of the phase current based on an estimated rotor position of the motor. The motor control device farther includes a superposing portion for superposing a superposed voltage having a predetermined frequency on a drive voltage for driving the motor and an estimating portion for deriving the estimated rotor position based on the superposed current that is extracted from the control current and flows in the motor in accordance with the superposed voltage. A voltage vector locus of the superposed voltage from the superposing portion presents an ellipse.
摘要:
An object is to provide a driving device capable of smoothly shifting from a starting state to a sensor-less vector control, in a case where the device drives a motor by the sensor-less vector control, and the device includes a voltage detecting circuit which detects an induced electromotive voltage of the motor. A control circuit starts the motor by rectangular wave control. A magnetic pole position of a rotor is detected based on an induced electromotive voltage of one remaining phase of the motor detected by the voltage detecting circuit. The control circuit controls a main inverter circuit based on the detected magnetic pole position, and accelerates the motor by the rectangular wave control. In a case where a predetermined shift revolution speed is reached, the control circuit shifts to vector control by the sensor-less in which the magnetic pole position detected during the rectangular wave control is used as an initial value.
摘要:
A motor control device includes a current detecting portion that detects current flowing between an inverter for driving a three-phase motor and a DC power supply for supplying DC voltage to the inverter, a current estimator that estimates a current vector of the motor on a rotating coordinate that rotates along with rotation of a rotor of the motor. The motor control device detects motor current flowing in the motor by using one of a detecting result of the current detecting portion and an estimation result of the current estimator, so as to control the motor via the inverter based on the detected motor current. The current estimator estimates the current vector based on the motor current detected in the past and a specified voltage value, for example.