摘要:
Disclosed is a production method of polypropylene having high MFR value and excellent product qualities with high productivity. The method enables to produce a propylene polymer by a gas phase process where the reaction heat is removed mainly by the heat of vaporization of liquefied propylene. The method is characterized by using a solid catalyst component (A) which is prepared by contacting components (A1), (A2) and (A3) shown below. Further disclosed are: a propylene polymer produced by the method; a propylene polymer composition; and a molded body of the composition. Component (A1): a solid component containing titanium, magnesium and a halogen as essential components. Component (A2): a vinyl silane compound. Component (A3): an organosilicon compound having an alkoxy group (A3a) and/or a compound having at least two ether bonds (A3b).
摘要:
Disclosed is a production method of polypropylene having high MFR value and excellent product qualities with high productivity. The method enables to produce a propylene polymer by a gas phase process where the reaction heat is removed mainly by the heat of vaporization of liquefied propylene. The method is characterized by using a solid catalyst component (A) which is prepared by contacting components (A1), (A2) and (A3) shown below. Further disclosed are: a propylene polymer produced by the method; a propylene polymer composition; and a molded body of the composition. Component (A1): a solid component containing titanium, magnesium and a halogen as essential components. Component (A2): a vinyl silane compound. Component (A3): an organosilicon compound having an alkoxy group (A3a) and/or a compound having at least two ether bonds (A3b).
摘要:
Disclosed is a production method of polypropylene having high MFR value and excellent product qualities with high productivity. The method enables to produce a propylene polymer by a gas phase process where the reaction heat is removed mainly by the heat of vaporization of liquefied propylene. The method is characterized by using a solid catalyst component (A) which is prepared by contacting components (A1), (A2) and (A3) shown below. Further disclosed are: a propylene polymer produced by the method; a propylene polymer composition; and a molded body of the composition. Component (A1): a solid component containing titanium, magnesium and a halogen as essential components. Component (A2): a vinyl silane compound. Component (A3): an organosilicon compound having an alkoxy group (A3a) and/or a compound having at least two ether bonds (A3b).
摘要:
Disclosed is a production method of polypropylene having high MFR value and excellent product qualities with high productivity. The method enables to produce a propylene polymer by a gas phase process where the reaction heat is removed mainly by the heat of vaporization of liquefied propylene. The method is characterized by using a solid catalyst component (A) which is prepared by contacting components (A1), (A2) and (A3) shown below. Further disclosed are: a propylene polymer produced by the method; a propylene polymer composition; and a molded body of the composition. Component (A1): a solid component containing titanium, magnesium and a halogen as essential components. Component (A2): a vinyl silane compound. Component (A3): an organosilicon compound having an alkoxy group (A3a) and/or a compound having at least two ether bonds (A3b).
摘要:
A polyolefin based biaxially oriented multi-layer film having at least one surface layer comprise of the propylene-ethylene random block copolymer;The propylene-ethylene random block copolymer obtained through sequential polymerization catalyzed by a metallocene component which is composed of 30 to 70 wt % of a propylene-ethylene random copolymer component having an ethylene content of 1 to 7 wt % produced in the first step of the polymerization and from 70 to 30 wt % of a low crystallinity or an amorphous propylene-ethylene random copolymer component produced in the second step of the polymerization having an ethylene content of 6 to 15 wt % higher than that of the polymer component obtained in the first step, wherein that shows a single peak at 0° C. or lower in the temperature-loss tangent (tan δ) curve obtained by dynamic mechanical analysis (DMA).
摘要:
A polypropylene based heat shrinkable film obtained by using a propylene-ethylene block copolymer (A) which satisfies the following requirements (A-i) to (A-iv), and having heat shrinkability imparted by orientation in at least one direction: (A-i) it is a propylene-ethylene block copolymer obtained through sequential polymerization catalyzed by a metallocene catalyst which is composed of 30 to 95 wt % of a propylene homopolymer or propylene-ethylene random copolymer component (A1) having an ethylene content of at most 7 wt % produced in a first step and 70 to 5 wt % of a propylene-ethylene random copolymer component (A2) produced in a second step having an ethylene content higher by 3 to 20 wt % than that of the component (A1); (A-ii) it has a melt flow rate (MFR: 2.16 kg, 230° C.) within a range of 0.1 to 30 g/10 min; (A-iii) a temperature-loss tangent (tan δ) curve obtained by dynamic mechanical analysis (DMA) has a single peak at a temperature of at most 0° C.; (A-iv) in a temperature rising elution fractionation (TREF) curve obtained as a plot of an elution amount (dwt %/dT) to a temperature by means of temperature rising elution fractionation (TREF) using an o-dichlorobenzene solvent in a temperature range of −15° C. to 140° C., a peak temperature T(A1) observed at a high temperature side is within a range of 60° C. to 88° C., a peak temperature T(A2) observed at a low temperature side is at most 40° C. or a peak temperature T(A2) is not observed, and a temperature T(A4) at which 99 wt % of the total amount of the propylene-ethylene block copolymer is eluted is less than 90° C.
摘要:
A polypropylene based heat shrinkable film obtained by using a propylene-ethylene block copolymer (A) which satisfies the following requirements (A-i) to (A-iv), and having heat shrinkability imparted by orientation in at least one direction: (A-i) it is a propylene-ethylene block copolymer obtained through sequential polymerization catalyzed by a metallocene catalyst which is composed of 30 to 95 wt % of a propylene homopolymer or propylene-ethylene random copolymer component (A1) having an ethylene content of at most 7 wt % produced in a first step and 70 to 5 wt % of a propylene-ethylene random copolymer component (A2) produced in a second step having an ethylene content higher by 3 to 20 wt % than that of the component (A1); (A-ii) it has a melt flow rate (MFR: 2.16 kg, 230° C.) within a range of 0.1 to 30 g/10 min; (A-iii) a temperature-loss tangent (tan δ) curve obtained by dynamic mechanical analysis (DMA) has a single peak at a temperature of at most 0° C.; (A-iv) in a temperature rising elution fractionation (TREF) curve obtained as a plot of an elution amount (dwt %/dT) to a temperature by means of temperature rising elution fractionation (TREF) using an o-dichlorobenzene solvent in a temperature range of −15° C. to 140° C., a peak temperature T(A1) observed at a high temperature side is within a range of 60° C. to 88° C., a peak temperature T(A2) observed at a low temperature side is at most 40° C. or a peak temperature T(A2) is not observed, and a temperature T(A4) at which 99 wt % of the total amount of the propylene-ethylene block copolymer is eluted is less than 90° C.
摘要:
A polyolefin based biaxially oriented multi-layer film having at least one surface layer comprise of the propylene-ethylene random block copolymer; The propylene-ethylene random block copolymer obtained through sequential polymerization catalyzed by a metallocene component which is composed of 30 to 70 wt % of a propylene-ethylene random copolymer component having an ethylene content of 1 to 7 wt % produced in the first step of the polymerization and from 70 to 30 wt % of a low crystallinity or an amorphous propylene-ethylene random copolymer component produced in the second step of the polymerization having an ethylene content of 6 to 15 wt % higher than that of the polymer component obtained in the first step, wherein that shows a single peak at 0° C. or lower in the temperature-loss tangent (tanδ) curve obtained by dynamic mechanical analysis (DMA).