摘要:
A base station includes a transmit path circuitry to transmit an uplink grant in a DCI format to a subscriber station. The base station also includes a receive path circuitry to receive only UCI on a PUSCH from a subscriber station when the uplink grant includes a MCS of an enabled transport block (TB) with a value of 29, or a redundancy version of the PUSCH with a value of 1; a CSI request field with a non-zero value; and a total number of physical resource blocks allocated for the subscriber station, NPRB, with a value less than or equal to a threshold number of physical resource blocks, TPRB. TPRB is based at least partly upon one of a total number of CSI information bits to be transmitted on the PUSCH, Ntotal, and a number of DL CCs reported in a current CSI reporting, NCCs.
摘要:
A base station includes a transmit path circuitry to scramble CRC bits of a DCI format using a C-RNTI for dynamic scheduling, and scramble the CRC bits of the DCI format using an SPS C-RNTI for semi-persistent scheduling. If C-RNTI is used, the circuitry generates a downlink transmission grant using the DCI format being a fallback format to indicate a transmit diversity transmission scheme or a single-layer beamforming scheme, and uses the DCI format being a dual-layer beamforming format to indicate a dual-DRS port transmission scheme or a single-DRS port transmission scheme. If SPS C-RNTI is used, the circuitry generates a downlink transmission grant using the DCI format being the fallback format to indicate a single-DRS port transmission scheme, and uses the DCI format being the dual-layer beamforming format to indicate a dual-DRS port transmission scheme or a single-DRS port transmission scheme.
摘要:
A mobile station includes a transmission chain capable of communicating via an uplink transmission to at least one base station in a Multiple Input Multiple Output wireless network. The mobile station includes a plurality of transmit antenna and a transmitter coupled to the plurality of transmit antenna. The transmitter includes a layer mapper that maps data and uplink control information to at least one layer. The mapping is performed prior to Discrete Fourier Transform precoding such that the data and uplink control information are multiplexed and interleaved. The transmitter is configured to simultaneously transmit the data and uplink control information on at least one of a plurality of transmission layers.
摘要:
A user equipment (UE) is configured to communicate with a plurality of base stations in a wireless network. The UE includes a processor that receive a downlink grant scheduling a physical downlink shared channel (PDSCH) for the UE, the downlink grant being transmitted in a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (ePDCCH). The processor also receives UE-specific demodulation reference signals (UE-RS) provided for demodulation of the PDSCH, wherein the UE-RS are scrambled according to a scrambling sequence initialized with an initialization value cinit. The downlink grant includes a one-bit scrambling identifier (SCID) information field configured to indicate a pair of values comprising a scrambling identifier nSCID and a virtual cell ID Nv-IDcell out of two candidate pairs, the pair of values to be used for determining the initialization value cinit for the UE-RS.
摘要:
A base station includes a transmit path circuitry to scramble CRC bits of a DCI format using a C-RNTI for dynamic scheduling, and scramble the CRC bits of the DCI format using an SPS C-RNTI for semi-persistent scheduling. If C-RNTI is used, the circuitry generates a downlink transmission grant using the DCI format being a fallback format to indicate a transmit diversity transmission scheme or a single-layer beamforming scheme, and uses the DCI format being a dual-layer beamforming format to indicate a dual-DRS port transmission scheme or a single-DRS port transmission scheme.If SPS C-RNTI is used, the circuitry generates a downlink transmission grant using the DCI format being the fallback format to indicate a single-DRS port transmission scheme, and uses the DCI format being the dual-layer beamforming format to indicate a dual-DRS port transmission scheme or a single-DRS port transmission scheme.
摘要:
A user equipment (UE) is configured to communicate with a plurality of base stations in a wireless network. The UE includes a processor that receive a downlink grant scheduling a physical downlink shared channel (PDSCH) for the UE, the downlink grant being transmitted in a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (ePDCCH). The processor also receives UE-specific demodulation reference signals (UE-RS) provided for demodulation of the PDSCH, wherein the UE-RS are scrambled according to a scrambling sequence initialized with an initialization value cinit. The downlink grant includes a one-bit scrambling identifier (SCID) information field configured to indicate a pair of values comprising a scrambling identifier nSCID and a virtual cell ID Nv-IDcell out of two candidate pairs, the pair of values to be used for determining the initialization value cinit for the UE-RS.
摘要:
In a wireless network that operates according to the Long-Term Evolution Advanced standard, a mobile station determines a number of resource elements to be used for HARQ-ACK (hybrid automatic-repeat-request acknowledgement information) or RI (rank indication) on a MIMO (multiple-input multiple-output) PUSCH (physical uplink shared channel). In an embodiment, the mobile station determines a number O of bits in a payload for HARQ-ACK or RI. When the payload O is within a first range, the mobile station determines a minimum number Qmin of resource elements to be used according to a first equation. When the payload O is within a second range, the mobile station determines the minimum number Qmin of resource elements to be used according to a second equation. The mobile station then determines the number Q′ of resource elements according to Qmin and a third equation.
摘要:
A base station includes a transmit path circuitry to transmit an uplink grant to a subscriber station. The uplink grant indicating a first MCS value for a first codeword transmission and a second MCS value for a second codeword transmission. The base station also includes a receive path circuitry configured to receive a MIMO uplink subframe from the subscriber station, the MIMO uplink subframe having a first subset of layers used for the first codeword transmission and a second subset of layers used for the second codeword transmission. ACK/NACK information and RI information are repeated on both the first and second subsets of layers, and CQI is spatially multiplexed on either the first subset or the second subset of layers. If the first MCS value is different from the second MCS value, the CQI is spatially multiplexed onto the subset of layers having a higher MCS value.
摘要:
In a wireless network that operates according to the Long-Term Evolution Advanced standard, a mobile station determines a number of resource elements to be used for HARQ-ACK (hybrid automatic-repeat-request acknowledgement information) or RI (rank indication) on a MIMO (multiple-input multiple-output) PUSCH (physical uplink shared channel). In an embodiment, the mobile station determines a number O of bits in a payload for HARQ-ACK or RI. When the payload O is within a first range, the mobile station determines a minimum number Qmin of resource elements to be used according to a first equation. When the payload O is within a second range, the mobile station determines the minimum number Qmin of resource elements to be used according to a second equation. The mobile station then determines the number Q′ of resource elements according to Qmin and a third equation.
摘要:
A mobile station capable of communicating via an uplink transmission to at least one base station in a Multiple Input Multiple Output wireless network can map codewords to a plurality of layers. The mobile station includes a plurality of transmit antenna and a controller coupled to the plurality of transmit antenna. The controller is configured to map at least one codeword to a plurality of layers. The codeword includes a plurality of code blocks. The controller is configured to generate the plurality of code blocks from a transport block such that the number of code blocks generated correspond to an integer multiple of a number the plurality of layers.