摘要:
A thermoelectric module includes a first and a second substrates, plural thermoelectric elements, plural first and second metal electrodes, plural first and second solder layers, and spacers. The thermoelectric elements are disposed between the first and second substrates, and each pair includes a P-type and an N-type thermoelectric elements. An N-type thermoelectric element is electrically connected to the other P-type thermoelectric element of the adjacent pair of thermoelectric element by the second metal electrode. The first metal electrodes and the lower end surfaces of the P/N type thermoelectric elements are jointed by the first solder layers. The second metal electrodes and the upper end surfaces of the P/N type thermoelectric elements are jointed by the second solder layers. The spacers are positioned at one of the first and second solder layers. The melting point of the spacer is higher than the liquidus temperatures of the first and second solder layers.
摘要:
A melting temperature adjustable metal thermal interface material (TIM) and a packaged semiconductor including thereof are provided. The metal TIM includes about 20-98 wt % of In, about 0.03-4 wt % of Ga, and at least one element of Bi, Sn, Ag and Zn. The metal TIM has an initial melting temperature between about 60-144° C.
摘要:
A melting temperature adjustable metal thermal interface material (TIM) and a packaged semiconductor including thereof are provided. The metal TIM includes about 20-98 wt % of In, about 0.03-4 wt % of Ga, and at least one element of Bi, Sn, Ag and Zn. The metal TIM has an initial melting temperature between about 60-144° C.
摘要:
The invention provides a metal thermal interface material (TIM) with through-holes in its body and/or zigzags or wave shapes on its border, which is suitable for use at thermal interfaces of a thermal conduction path from an integrated circuit die to its associated heat sink in a packaged microelectronic component. The invention also includes a thermal module and a packaged microelectronic component including the metal thermal interface material.
摘要:
The invention provides a metal thermal interface material (TIM) with through-holes in its body and/or zigzags or wave shapes on its border, which is suitable for use at thermal interfaces of a thermal conduction path from an integrated circuit die to its associated heat sink in a packaged microelectronic component. The invention also includes a thermal module and a packaged microelectronic component including the metal thermal interface material.
摘要:
A melting temperature adjustable metal thermal interface material (TIM) is provided. The metal TIM includes In, Bi, Sn, and Ga. A content of Ga ranges from 0.01 wt % to 3 wt %. The metal TIM has an initial melting temperature lower than 60° C. and has no element hazardous to the environment.
摘要:
A melting temperature adjustable metal thermal interface material (TIM) is provided. The metal TIM includes In, Bi, Sn, and Ga. A content of Ga ranges from 0.01 wt % to 3 wt %. The metal TIM has an initial melting temperature lower than 60° C. and has no element hazardous to the environment.
摘要:
A two-step two-piece high-pressure casting process for the fabrication of a scroll member containing a generally circular end plate, a scroll hub on one side of the end plate and an involute wrap on the other side thereof. The involute wrap is pre-fabricated from a wear-resistant alloy or aluminum alloy based composite having low liquidus temperature which is placed inside the involute groove of a scroll mold. The scroll mold contains a mobile scroll mold and a stationary scroll mold. The mobile scroll mold contains a first cavity having the shape of the scroll hub; whereas the stationary scroll mold contains a second cavity having the shape of the circular end plate and an involute groove disposed below the second cavity. A molten aluminum alloy or aluminum alloy based composite is injected into the first and second mold cavities which, after solidifies, becomes the scroll hub and the end plate is respective positions whereby a metallurgical bonding will be developed between the end plate and the involute wrap to ensure the integrity of the scroll member. The involute groove has a depth shorter than the height of the involute wrap to increase the area of metallurgical bonding between the end plate and the involute wrap.