摘要:
A dynamic random access memory (DRAM) structure and a fabricating process thereof are provided. In the fabricating process, a channel region is formed with a doped region having identical conductivity as the substrate in a section adjacent to an isolation structure. The doped region is formed in a self-aligned process by conducting a tilt implantation implanting ions into the substrate through the upper portion of the capacitor trench adjacent to the channel region after forming the trench but before the definition of the active region.
摘要:
A method for forming a volatile memory structure. A buried trench capacitor in each of a pair of neighboring trenches formed in a substrate. An asymmetric collar insulating layer is formed over an upper portion of the sidewall of each trench and has a high and a low level portions. A conductive layer is formed overlying the buried trench capacitor and below the surface of the substrate. The high level portion is adjacent to the substrate between the neighboring trenches and the low level portion is covered by the conductive layer. A dielectric layer is formed overlying the conductive layer. Two access transistors are formed on the substrate outside of the pair of the neighboring trenches, respectively, which have source/drain regions electrically connecting to the conductive layer. A volatile memory structure is also disclosed.
摘要:
A method for manufacturing a trench capacitor that includes providing a semiconductor substrate, forming a deep trench in the substrate, forming a thin sacrificial layer on a surface of the trench, and forming a hemispherical silicon grain layer over the thin sacrificial layer, wherein the sacrificial layer has a thickness to act as an etch stop during a subsequent step to remove at least a portion of the hemispherical silicon grain layer, and is electrically conductive.
摘要:
A method for manufacturing a trench capacitor that includes providing a semiconductor substrate, forming a deep trench in the substrate, forming a thin sacrificial layer on a surface of the trench, and forming a hemispherical silicon grain layer over the thin sacrificial layer, wherein the sacrificial layer has a thickness to act as an etch stop during a subsequent step to remove at least a portion of the hemispherical silicon grain layer, and is electrically conductive.
摘要:
A dynamic random access memory (DRAM) structure and a fabricating process thereof are provided. In the fabricating process, a channel region is formed with a doped region having identical conductivity as the substrate in a section adjacent to an isolation structure. The doped region is formed in a self-aligned process by conducting a tilt implantation implanting ions into the substrate through the upper portion of the capacitor trench adjacent to the channel region after forming the trench but before the definition of the active region.
摘要:
A method of manufacturing a deep trench capacitor. A deep trench is formed in a substrate. A conformal capacitor dielectric layer and a first conductive layer are sequentially formed, completely filling the deep trench. The first conductive layer has a seam. The first conductive layer is etched to open up the seam. A collar oxide layer is formed over the interior surface of the deep trench. A collar liner layer is formed over the collar oxide layer inside the deep trench. Using the collar liner layer as a mask, the collar oxide material above the first conductive layer and within the seam is removed. The collar liner layer is removed. Finally, a second conductive layer and a third conductive layer are sequentially formed inside the deep trench.
摘要:
A method for manufacturing a trench capacitor that includes providing a semiconductor substrate, forming a deep trench in the substrate, forming a thin sacrificial layer on a surface of the trench, and forming a hemispherical silicon grain layer over the thin sacrificial layer, wherein the sacrificial layer has a thickness to act as an etch stop during a subsequent step to remove at least a portion of the hemispherical silicon grain layer, and is electrically conductive.
摘要:
A method for forming a volatile memory structure. A buried trench capacitor in each of a pair of neighboring trenches formed in a substrate. An asymmetric collar insulating layer is formed over an upper portion of the sidewall of each trench and has a high and a low level portions. A conductive layer is formed overlying the buried trench capacitor and below the surface of the substrate. The high level portion is adjacent to the substrate between the neighboring trenches and the low level portion is covered by the conductive layer. A dielectric layer is formed overlying the conductive layer. Two access transistors are formed on the substrate outside of the pair of the neighboring trenches, respectively, which have source/drain regions electrically connecting to the conductive layer. A volatile memory structure is also disclosed.
摘要:
A dynamic random access memory (DRAM) structure and a fabricating process thereof are provided. In the fabricating process, a channel region is formed with a doped region having identical conductivity as the substrate in a section adjacent to an isolation structure. The doped region is formed in a self-aligned process by conducting a tilt implantation implanting ions into the substrate through the upper portion of the capacitor trench adjacent to the channel region after forming the trench but before the definition of the active region.
摘要:
A heat dissipating system of a high-speed circular knitting machine includes a super low temperature air gun. Cold air is ejected from a cold air outlet of the super low temperature air gun for carrying away the high heat produced by a cylinder base during a knitting process. The super low temperature air gun is connected to an extension pipe and extended to a gap between a cutting disc and a pressing plate, or saddle bases, or a lower rhombus ring and two saddle bases, or yarn feeding nozzles. Cold air ejected from the cold air outlet passes through the gap to the cylinder base or other peripheral components of the high-speed circular knitting machine to achieve the heat dissipating effect. The super low temperature air gun is installed inside a leg for supporting a yarn supplying device or on its external surface or on a yarn feeding ring.