摘要:
The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films, a nonmagnetic film sandwiched between the magnetic films, and leads connected to the magnetoresistance effect element wherein the width of one of the magnetic films, which essentially responds to a signal magnetic field, is not more than a distance between leads. The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films and a nonmagnetic film sandwiched between the magnetic films, which makes use of a change in magnetic resistance caused by spin-dependent scattering, wherein at least a portion of one magnetic films, which essentially respond to a signal magnetic field extends in a direction same as that of the signal magnetic field.
摘要:
A magnetoresistive head includes a magnetoresistive effect element including a magnetoresistive film, which has a first ferromagnetic layer and a second ferromagnetic layer separated by a nonmagnetic layer. A magnetization direction of the first ferromagnetic layer is perpendicular to a magnetization direction of the second ferromagnetic layer when a signal magnetic field is zero. A pair of bias layers provide magnetic bias, and a top surface of each of the pair of bias layers faces a lower surface of each edge region of the magnetoresistive film. A pair of lead electrodes produce a current flow through the magnetoresistive film, and each of the pair of lead electrodes is disposed on or above the magnetoresistive film.
摘要:
A magnetoresistance effect head comprises a magnetoresistance effect element portion including a magnetoresistance effect film having a magnetic field response portion, a magnetic field providing film for providing the magnetoresistance effect film with a bias magnetic field, and a conductor film for supplying a current to the magnetoresistance effect film, wherein the magnetoresistance effect element portion has a laminate structure portion being composed of at least the conductor film, the magnetic field providing film, and the magnetoresistance effect film layered in this order at other than the magnetic field response portion. The magnetoresistance effect head is obtained by patterning a laminate film composed of a conductor film and a magnetic field providing film corresponding to a lead shape, forming an MR film, and patterning the MR film corresponding to a lead shape and the shape of a magnetic field response portion. Alternatively, a magnetic field providing film and a conductor film are layered in the order in a passive region other than the magnetic field response portion, forming a laminate film such that the magnetic field providing film is exposed at surface of the edge portion on the magnetic field response portion side. The MR film is formed on almost only the magnetic field response portion so that the MR film overlaps with the exposed portion of the magnetic field providing film.
摘要:
A member having a first and a second magnetic layer are magnetostatically coupled and laminated and the first magnetic layer formed on a magneto-resistive element, for creating the exchange coupling on the magneto-resistive element and the first magnetic layer. The member is formed by sequentially laminating a first ferromagnetic layer magnetized in a sense along the direction of the longitudinal bias of the magneto-resistive element, non-magnetic layer and second ferromagnetic layer magnetized in a direction opposite to the magnetized direction of the first ferromagnetic layer, for example.
摘要:
The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films, a nonmagnetic film sandwiched between the magnetic films, and leads connected to the magnetoresistance effect element wherein the width of one of the magnetic films, which essentially responds to a signal magnetic field, is not more than a distance between leads. The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films and a nonmagnetic film sandwiched between the magnetic films, which makes use of a change in magnetic resistance caused by spin-dependent scattering, wherein at least a portion of one magnetic films, which essentially respond to a signal magnetic field, extends in a direction same as that of the signal magnetic field.
摘要:
A magnetoresistive head includes a magnetoresistive effect element including a magnetoresistive film, which has a first ferromagnetic layer and a second ferromagnetic layer separated by a nonmagnetic layer. A magnetization direction of the first ferromagnetic layer is perpendicular to a magnetization direction of the second ferromagnetic layer when a signal magnetic field is zero. A pair of bias layers provide magnetic bias, and a top surface of each of the pair of bias layers faces a lower surface of each edge region of the magnetoresistive film. A pair of lead electrodes produce a current flow through the magnetoresistive film, and each of the pair of lead electrodes is disposed on or above the magnetoresistive film.
摘要:
The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films, a nonmagnetic film sandwiched between the magnetic films, and leads connected to the magnetoresistance effect element wherein the width of one of the magnetic films, which essentially responds to a signal magnetic field, is not more than a distance between leads. The present invention provides a thin film head having a magnetoresistance effect element which includes at least two magnetic films and a nonmagnetic film sandwiched between the magnetic films, which makes use of a change in magnetic resistance caused by spin-dependent scattering, wherein at least a portion of one magnetic films, which essentially respond to a signal magnetic field extends in a direction same as that of the signal magnetic field.
摘要:
According to one embodiment, a method of manufacturing a magnetic memory, the method includes forming a first magnetic layer having a variable magnetization, forming a tunnel barrier layer on the first magnetic layer, forming a second magnetic layer on the tunnel barrier layer, the second magnetic layer having an invariable magnetization, forming a hard mask layer as a mask on the second magnetic layer, patterning the second magnetic layer by using the mask of the hard mask layer, and executing a GCIB-irradiation by using the mask of the hard mask layer, after the patterning.
摘要:
An exchange coupling film, magnetic sensor having the exchange coupling film, and a magnetic head having the same. The exchange coupling film includes a ferromagnetic layer and an antiferromagnetic layer where a total a magnetic anisotropy is controlled to be dispersed by annealing or depositing the film in rotating magnetic fields. Small local magnetic regions of different uniaxial anisotropy are introduced in the exchange coupling film. The magnetic anisotropy dispersion of the exchange coupling film results in prohibiting large domain wall transfer of an irreversible change in magnetization direction and suppressing BHN.
摘要:
A magnetic yoke having a magnetic gap provided in the side of the surface facing the medium is disposed on the surface of a substrate. An MR film is disposed on the surface of the magnetic yoke substantially parallel to the substrate with a predetermined separation from the surface S facing the medium. At least both end portions of the MR film are magnetically coupled to the magnetic yoke. A pair of leads for supplying sensing current to the MR film have magnetic lead portions formed from the same magnetic layers as the magnetic yoke. The magnetic lead portions curb deterioration of MR head properties and yield reduction during formation of the leads. Furthermore, a bias magnetic field is applied to the magnetic yoke and the MR film at least during operation of the head. This bias magnetic field is for instance provided by a magnetic field induced by the electric current. Alternatively, a magnetic field induced by the electric current is applied while heat-processing the magnetic yoke. Magnetic anisotropy is induced to the magnetic yoke in a direction differing according to the position. This magnetic anisotropy curbs Barkhausen noise caused by the magnetic yoke.