摘要:
A magnetic yoke having a magnetic gap provided in the side of the surface facing the medium is disposed on the surface of a substrate. An MR film is disposed on the surface of the magnetic yoke substantially parallel to the substrate with a predetermined separation from the surface S facing the medium. At least both end portions of the MR film are magnetically coupled to the magnetic yoke. A pair of leads for supplying sensing current to the MR film have magnetic lead portions formed from the same magnetic layers as the magnetic yoke. The magnetic lead portions curb deterioration of MR head properties and yield reduction during formation of the leads. Furthermore, a bias magnetic field is applied to the magnetic yoke and the MR film at least during operation of the head. This bias magnetic field is for instance provided by a magnetic field induced by the electric current. Alternatively, a magnetic field induced by the electric current is applied while heat-processing the magnetic yoke. Magnetic anisotropy is induced to the magnetic yoke in a direction differing according to the position. This magnetic anisotropy curbs Barkhausen noise caused by the magnetic yoke.
摘要:
A magnetoresistive head includes a magnetoresistive effect element including a magnetoresistive film, which has a first ferromagnetic layer and a second ferromagnetic layer separated by a nonmagnetic layer. A magnetization direction of the first ferromagnetic layer is perpendicular to a magnetization direction of the second ferromagnetic layer when a signal magnetic field is zero. A pair of bias layers provide magnetic bias, and a top surface of each of the pair of bias layers faces a lower surface of each edge region of the magnetoresistive film. A pair of lead electrodes produce a current flow through the magnetoresistive film, and each of the pair of lead electrodes is disposed on or above the magnetoresistive film.
摘要:
A magnetoresistive head includes a magnetoresistive effect element including a magnetoresistive film, which has a first ferromagnetic layer and a second ferromagnetic layer separated by a nonmagnetic layer. A magnetization direction of the first ferromagnetic layer is perpendicular to a magnetization direction of the second ferromagnetic layer when a signal magnetic field is zero. A pair of bias layers provide magnetic bias, and a top surface of each of the pair of bias layers faces a lower surface of each edge region of the magnetoresistive film. A pair of lead electrodes produce a current flow through the magnetoresistive film, and each of the pair of lead electrodes is disposed on or above the magnetoresistive film.
摘要:
A magnetoresistance effect element includes a free layer, a pinned layer and a non-magnetic intermediate layer interposed between the free layer and the pinned layer. Additionally, a metal barrier layer is provided adjacent to the first magnetic layer. An electron reflecting layer located adjacent to the metal barrier layer contains at least one selected from oxides, nitrides, carbides, fluorides, chlorides, sulfides and borides.
摘要:
According to the another aspect of the invention, a magnetoresistance effect element having a magnetoresistance effect film which includes a crystal growth controlling layer as one of films therein, characterized in that a roughness along a boundary between films overlying said crystal growth controlling layer is smaller than a roughness along a boundary between films underlying said crystal growth controlling layer is provided. According to the another aspect of the invention, a magnetoresistance effect element comprising a free layer, pinned layer and a non-magnetic intermediate layer interposed between said free layer and pinned layer, characterized in further comprising a metal barrier layer provided adjacent to said first magnetic layer, and an electron reflecting layer located adjacent to said metal barrier layer and containing at least one selected from oxides, nitrides, carbides, fluorides, chlorides, sulfides and borides is also provided.
摘要:
A GMR element part is formed of a laminated structure which comprises at least one pair of ferromagnetic layers and a nonmagnetic intermediate layer interposed between the pair of ferromagnetic layers. Signal magnetic field detecting ferromagnetic layers will be optionally disposed one each outside the pair of ferromagnetic layers. The GMR element part consists of a laminated structure which is provided with one pair of GMR ferromagnetic layers opposed to each other across a nonmagnetic intermediate layer or a laminated structure which is provided with one pair of GMR ferromagnetic layer opposed to each other across a nonmagnetic intermediate layer and at least one low-permeability ferromagnetic layer disposed there between through the medium of a nonmagnetic intermediate layer. The GMR element part functions as a read head for sensing the resistance which is varied when signal magnetic fields of mutual opposite directions are applied to the pair of GMR ferromagnetic layers and displaying a differential detection type output response. A granular type ferromagnetic intermediate layer will be used as the GMR element part.
摘要:
A GMR element part is formed of a laminated structure which comprises at least one pair of ferromagnetic layers and a nonmagnetic intermediate layer interposed between the pair of ferromagnetic layers. Signal magnetic field detecting ferromagnetic layers will be optionally disposed one each outside the pair of ferromagnetic layers. The GMR element part consists of a laminated structure which is provided with one pair of GMR ferromagnetic layers opposed to each other across a nonmagnetic intermediate layer or a laminated structure which is provided with one pair of GMR ferromagnetic layer opposed to each other across a nonmagnetic intermediate layer and at least one low-permeability ferromagnetic layer disposed there between through the medium of a nonmagnetic intermediate layer. The GMR element part functions as a read head for sensing the resistance which is varied when signal magnetic fields of mutual opposite directions are applied to the pair of GMR ferromagnetic layers and displaying a differential detection type output response. A granular type ferromagnetic intermediate layer will be used as the GMR element part.
摘要:
A magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer formed on a metallic buffer layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the metallic buffer layer and the first magnetic layer. Or a magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer composed of a laminated film of a magnetic undercoat layer and a ferromagnetic layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the middle non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the magnetic undercoat layer and the ferromagnetic layer.
摘要:
A magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer formed on a metallic buffer layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the metallic buffer layer and the first magnetic layer. Or a magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer composed of a laminated film of a magnetic undercoat layer and a ferromagnetic layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the middle non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the magnetic undercoat layer and the ferromagnetic layer.
摘要:
A magneto-resistance effect head records and reproduces recorded magnetic material. The magneto-resistance effect head has a magneto-resistance effect film connected to a pair of leads. Additionally, a magnetic yoke, with a first and second magnetic yoke member, directs a signal magnetic field from a recording medium to the magneto-resistance effect film. The magneto-resistance effect head is constructed such that the first and second magnetic yoke members have surfaces that face the recording medium. The surfaces of the first and second magnetic yoke members have a magnetic gap between them. Additionally, the magneto-resistance effect film is recessed from the medium facing surfaces by a predetermined distance. Moreover, the first and second magnetic yoke members are aligned almost in parallel with the magnetic flux flow from the recording medium to the first magnetic yoke member, the magneto-resistance effect film, and the second magnetic yoke member.