Abstract:
A signal change range, which is generated due to a pointing operation of a pointer on a coordinate input region, with respect to an initial detection signal distribution of a detection unit in an initial state in which no pointing operation is made on the coordinate input region, is specified. End portion information of the specified signal change range is detected. Coordinates of the pointed position of the pointer are calculated using at least one of a plurality of pieces of detected end portion information.
Abstract:
Machining is possible in such a manner that an optional position of a workpiece is positioned just under a tool by rotation of a turn table in a C-axis direction, movement of the turn table in a Y-axis direction, and movement of a spindle in a Z-axis direction, so that a width of a main unit in a X-axis direction can be made shorter in comparison with machining by moving the turn table in the X-axis direction. Besides, the turn table located on a front side of the main unit, an ATC located on the rear side thereof, and a separated control panel located on the rear side of the ATC, independent from the main unit can also make the width of a machining center in the X-axis direction shorter.
Abstract:
A molded article of a pen tip of an input pen for a coordinate input apparatus for inputting oscillation to an oscillation transmitting plate, detecting oscillation propagating through the oscillation transmitting plate and detecting indicated coordinates is molded by injecting a composition containing at least liquid crystalline resin into a mold member for molding the configuration of the pen tip. In a mold for the pen tip, at least one gate is formed in a molding member such that the gate is disposed at a position symmetric with respect to the center axis of the pen tip.
Abstract:
A vibration-transmitting tablet and coordinate-input apparatus at low prices, which enable to easily manage precision of vibration detection position. A vibration-input pen inputs vibration, generated by its vibrator, onto the vibration-transmitting tablet formed by polarizing a piezoelectric member in its thickness direction. When the vibration propagated on the vibration-transmitting tablet reaches four electrodes provided at predetermined positions of the vibration-transmitting tablet, electric signals based on the vibration are detected from the respective electrodes. A signal-waveform detector detects arrival of the vibration at the electrodes based on the electric signals. An arithmetic controller calculates coordinates of the vibration-input position based on arrival timings of the vibration. The arrangement of the electrodes on the vibration-transmitting tablet can be realized by etching, printing or the like, thus management of precision of vibration-detection positions can be much easier.
Abstract:
A coordinate input apparatus which can stably input coordinates at a high precision is provided. A vibration sensor is fixed to a vibration propagating plate by means such as an adhesion or the like. Electrodes are formed on both edge surfaces of the vibration sensor. One electrode is connected to the vibration propagating plate (its surface is made of a conductive material). Another electrode is connected to a conductive plate spring through an electrode leading member. The electrode leading member has a cylindrical portion to position a projecting portion to a center axis by setting a side surface of the vibration sensor to a reference has a relation adapted to be come into engagement with the vibration sensor. The plate spring presses the electrode leading member to the vibration sensor and is electrically connected to the vibration sensor. Since the position to extract a signal from the vibration sensor is positioned by setting the side surface of the vibration sensor to a reference, the signal can be stably extracted at a high precision.
Abstract:
When coordinate information is inputted into input device 14, display controller 13 sets input area 16 based on the input coordinate information, and instructs work station (WS) 12 to lower the contrast of the input area 16. The WS 12 then sends an image signal where the contrast of the input area 16 is lowered on the display device 11. This solves the problem that, in a case where the contrast or brightness of a display screen of an electronic board is set for viewers but not for a presenter who inputs characters and figures on the electronic board, the presenter has an uncomfortable feeling from too high contrast or brightness.
Abstract:
There is provided a highly precise coordinate input device not requiring a particular designating tool. A sheet, composed of a piezoelectric plate polarized in the direction of thickness, is superposed with a vibration transmitting plate, provided with vibration sensors in predetermined positions. The sheet generates vibration by a pulse signal generated by a sheet driver. When the sheet is pressed for example with a pen, the vibration is transmitted to the vibration transmitting plate from the pressed position, and is detected by the vibration sensors. A controller calculates the distance between the vibration input point and the vibration sensor, based on the delay time from the start of vibration to the detection. This operation is conducted for the plural sensors, and the coordinate is calculated from thus calculated distances.
Abstract:
Disclosed is a coordinate input apparatus for detecting an input vibration from a vibration pen by a vibration sensor provided on a vibration transmitting plate to measure a vibration transmission time to the vibration pen to detect the input coordinates of the vibration pen on the vibration transmitting plate on the basis of the measurement result. The vibration pen is made wireless by incorporating all mechanisms required to generate the vibration. A drive timing for vibration input from the vibration pen and used as a measurement origin of the vibration transmission time is transmitted to a main body for performing the coordinate detection processing by bringing the vibration pen in temporary contact with the main body.
Abstract:
A coordinate position correcting apparatus includes a setting device for setting in advance a coordinate to be input into a vibration input device, a correction coefficient calculator for calculating a correction coefficient as a ratio of the coordinate set by the setting device to a coordinate output by calculation, and a coordinate corrector for correcting the coordinate output by calculation on the basis of the correction coefficient calculated by the correction coefficient calculator.
Abstract:
In a coordinates input apparatus in which a vibration input from a vibration pen is detected by a plurality of vibration sensors attached to a transparent vibration propagating plate such as an acrylic or glass plate and the coordinate position of the vibration pen is detected from the vibration propagation times until the vibration sensors, the sensors and the vibration proof material are arranged in a manner such that a distance between the attaching boundary surface of the vibration proof material attached to the peripheral portion of the vibration propagating plate and the center of each sensor which is attached to the input side than the attaching boundary surface of the vibration proof material lies within a range from 0.5 time to a value less than 1.0 time as large as the diameter of the sensor, preferably, within a range from 1.0 mm to a value less than 2.0 mm.