摘要:
Conventional porous carbon materials obtained by carbonizing an organic gel were prone to shrinkage during their manufacture, in the course of which the density rose and the specific surface area decreased. Another problem was that density and specific surface area were difficult to control after an organic gel had already been formed. In the present invention, a carbon material with a large specific surface area is formed by forming a composite porous material having a reticulated skeleton and composed of a dry gel of an inorganic oxide, and taking advantage of the reaction of this dry gel of an inorganic oxide as a structural support. In one method, a carbon material is formed in this reticulated skeleton in a state in which the characteristics of a dry gel of an inorganic oxide with a large specific surface area are maintained. In another method, the specific surface area of a carbon material is further increased by removing the inorganic oxide of the reticulated skeleton in which the carbon material was formed.
摘要:
Methods of effectively utilizing yeast-containing waste products generated after yeast use can be applied to absorbing agents, drying agents, soil conditioners, catalysts, and other common applications in the same manner as to charcoal-based materials of other materials by carbonizing the waste product, but a new search was needed in order to broaden the industrial utilization of these products. By supporting a particulate or powdered charcoal-based material obtained by carbonizing a yeast-containing material on an electrically conductive gas-permeable base, an electrode can be obtained that is capable of the electrochemical reduction of oxygen. The present charcoal-based material can provide new applications that have not been hitherto proposed, in the sense that oxygen can be electrochemically reduced smoothly and at a small overvoltage (resistance), and a large electromotive force can be obtained, by placing the charcoal-based material at the intersection of the ion path and the oxygen path.
摘要:
The present invention provides a water photolysis system comprising: a casing 1 into which incident sunlight L can enter from the outside and a photolytic layer 5 which is disposed inside the casing 1; wherein the photolytic layer 5 has a light-transmissive porous material 51 and photocatalyst particles 52 supported thereon; a water layer 4 containing water in its liquid state is disposed below the photolytic layer 5 with a first space 6 disposed between the water layer and the photolytic layer; a sealed second space 7 is formed above the photolytic layer 5 in the casing 1; vapor generated from the water layer 4 is introduced into the photolytic layer 5 via the first space 6; and the vapor is decomposed into hydrogen and oxygen by the photocatalyst particles 52, which are excited by the sunlight L.
摘要:
It is an object of the present invention to provide a porous body containing an oxide semiconductor in which more efficient photocatalytic reactions and photoelectrode reactions occur. The present invention relates to a porous body having a network structure skeleton wherein 1) the aforementioned skeleton is composed of an inner part and a surface part, 2) the aforementioned inner part is substantially made of carbon material, and 3) all or part of the aforementioned surface part is an oxide semiconductor, and to a manufacturing method therefor.
摘要:
It is an object of the present invention to provide a porous body containing an oxide semiconductor in which more efficient photocatalytic reactions and photoelectrode reactions occur. The present invention relates to a porous body having a network structure skeleton wherein 1) the aforementioned skeleton is composed of an inner part and a surface part, 2) the aforementioned inner part is substantially made of carbon material, and 3) all or part of the aforementioned surface part is an oxide semiconductor, and to a manufacturing method therefor.
摘要:
It is an object of the present invention to provide an oxygen reduction electrode which provides four-electron reduction reaction with high selectivity in the reaction of reducing oxygen. The present invention involves a method of manufacturing an electrode for reducing oxygen used for four-electron reduction of oxygen, having (1) a first step wherein a charcoal-based material is obtained by carbonization of a starting material comprising a nitrogen-containing synthetic polymer, and (2) a second step wherein the electrode for reducing oxygen is manufactured using an electrode material comprising the charcoal-based material.
摘要:
It is an object of the present invention to provide an oxygen reduction electrode which provides four-electron reduction reaction with high selectivity in the reaction of reducing oxygen. The present invention involves a method of manufacturing an electrode for reducing oxygen used for four-electron reduction of oxygen, having (1) a first step wherein a charcoal-based material is obtained by carbonization of a starting material comprising a nitrogen-containing synthetic polymer, and (2) a second step wherein the electrode for reducing oxygen is manufactured using an electrode material comprising the charcoal-based material.
摘要:
The present invention provides a water photolysis system comprising: a casing 1 into which incident sunlight L can enter from the outside and a photolytic layer 5 which is disposed inside the casing 1; wherein the photolytic layer 5 has a light-transmissive porous material 51 and photocatalyst particles 52 supported thereon; a water layer 4 containing water in its liquid state is disposed below the photolytic layer 5 with a first space 6 disposed between the water layer and the photolytic layer; a sealed second space 7 is formed above the photolytic layer 5 in the casing 1; vapor generated from the water layer 4 is introduced into the photolytic layer 5 via the first space 6; and the vapor is decomposed into hydrogen and oxygen by the photocatalyst particles 52, which are excited by the sunlight L.
摘要:
The present invention provides an electrode comprising on an electrode substrate a catalytic layer comprising catalytically active particles and a solid polymer comprising a component represented by Structural Formula (1) below: wherein R1, R2, R3, and R4 are the same or different, and independently represent a hydrogen atom or C1-8 univalent hydrocarbon group, and m and n are independently an integer from 2 to 4; a fuel cell comprising the catalytic layer; and a fuel cell for bioimplantation whose surface is coated with the solid polymer.
摘要:
An object of the present invention is to provide an oxygen reduction electrode having excellent oxygen reduction properties (oxygen reduction catalyst abilities).The present invention encompasses: (1) A method for manufacturing a nanostructured manganese oxide having a dendritic structure formed from an agglomeration of primary particles, wherein the method comprises the steps of: removing components from a target plate that comprises one or more kinds of manganese oxides by irradiating the target plate with laser light in an atmosphere comprising a mixed gas of inert gas and oxygen gas, the content of the oxygen gas in the mixed gas being no less than 0.05% but no more than 0.5% as measured by mass flow rate; and depositing the removed components on a substrate that is opposed to the target plate substantially in parallel to obtain the nanostructured manganese oxide, and (2) an oxygen reduction electrode comprising a nanostructured transition metal oxide having a dendritic structure formed from an agglomeration of primary particles.