摘要:
A semiconductor memory cell includes: a memory element formed by a first field effect transistor having a gate insulating film made of a ferroelectric film; and a select switching element formed by a second field effect transistor having a gate insulating film made of a paraelectric film. The ferroelectric film and the paraelectric film are stacked together with a semiconductor film of a compound semiconductor interposed therebetween. A first gate electrode of the first field effect transistor is formed on a side of the ferroelectric film, and a second gate electrode of the second field effect transistor is formed on a side of the paraelectric film so as to face the first gate electrode. The semiconductor film forms a common channel layer of the first and second field effect transistors.
摘要:
A memory cell includes a memory element including a MFSFET having a gate insulating film made of a ferroelectric film, and a selection switching element including a MISFET having a gate insulating film made of a paraelectric film. A load element for a read operation is connected in series to the memory cell. The ferroelectric film and the paraelectric film are stacked with a semiconductor film being interposed therebetween. The semiconductor film forms a common channel shared by the MFSFET and the MISFET. The load element includes a MISFET having a channel made of the semiconductor film or a resistance element having a resistor made of the semiconductor film.
摘要:
In the operating method of the semiconductor memory device, (1) voltages V1, V2, Vs, and Vd, which satisfy V1>Vs, V1>Vd, V2>Vs, and V2>Vd, are applied to a first gate electrode, a second gate electrode, a source electrode, and a drain electrode to write a first resistance value, respectively, (2) the voltages V1, V2, Vs, and Vd, which satisfy V1>Vs, V1>Vd, V2
摘要:
A first electrode is formed on a stacked-layer film, which is formed of a ferroelectric layer and a semiconductor layer, at the ferroelectric layer and a plurality of second electrodes are formed on the stacked-layer film at the semiconductor layer side. Each of parts of the semiconductor layer located in regions in which the second electrodes are formed functions as a resistance modulation element (memory) using the polarization assist effect of the ferroelectric layer. Information (a low resistance state or a high resistance state) held in a memory is read by detecting a value of a current flowing in each part of the semiconductor layer. Information is written in a memory by inverting a polarization of the ferroelectric layer.
摘要:
In a non-volatile logic circuit, a first input electrode and a second input electrode are formed on a semiconductor layer and interposed between an electric current source electrode and an output electrode in a plan view. The semiconductor layer is disposed on a ferroelectric layer. A method of operating the non-volatile logic circuit includes a step of writing one state selected from four states by applying voltages to the first and second input electrode, respectively, a step of measuring current generated by applying the voltage between the electric current source electrode and the output electrode to determine, on the basis of the measured current, which of the high or low resistant state the non-volatile logic circuit has.
摘要:
A resistance-capacitance oscillation circuit comprises an amplifier and a phase shifting circuit. The phase shifting circuit comprises at least three resistance-capacitance circuit elements, each of which comprises a resistance and a capacitor. At least one of the resistance-capacitance circuit elements comprises a variable resistance and a variable capacitor. The variable resistance is formed of a first electrode, a second electrode, a part of a semiconductor film, a part of a ferroelectric film, and a fourth electrode. The variable capacitor is formed of the second electrode, a third electrode, a fifth electrode, another part of the ferroelectric film, another part of the semiconductor film, and a paraelectric film.
摘要:
A non-volatile logic circuit includes a control electrode, a ferroelectric layer disposed on the control electrode, a semiconductor layer disposed on the ferroelectric layer, a power electrode and an output electrode disposed on the semiconductor layer, and first to fourth input electrodes disposed on the semiconductor layer. The first and second input electrodes receive first and second inputs, respectively. The third and fourth input electrodes receive inversion signals of the second and first input signal, respectively. A resistance value of the semiconductor layer between the power electrode and the output electrode varies according to the first input signal and the second input signal so that an exclusive-OR signal of the first and second input signals is output from the output electrode.
摘要:
In a non-volatile logic circuit, a first input electrode and a second input electrode are formed on a semiconductor layer and interposed between an electric current source electrode and an output electrode in a plan view. The first input electrode is next to the second input electrode along the a direction orthogonal to the direction between the electric current source electrode and the output electrode. A method of operating the non-volatile logic circuit includes a step of writing one state selected from four states by applying voltages to the first input electrode and the second input electrode, respectively, and a step of measuring current generated by applying the voltage between the electric current power electrode and the output electrode to determine on the basis of the current, which of the high or low resistant state the non-volatile logic circuit has.
摘要:
A nonvolatile logic circuit includes logic configuration electrodes and input electrodes. The nonvolatile logic circuit is programmable to any one of the logics between the input signals selected from logical conjunction (AND), logical disjunction (OR), logical non-conjunction (NAND), logical non-disjunction (NOR), and logical exclusive disjunction (XOR) by changing applied voltages to the logic configuration electrodes.
摘要:
A method of flowing a current selectively with a nonvolatile switching device according to the present disclosure includes a step of configuring, in the nonvolatile switching device, any one of a first state in which a current does not flow between the electrode group, a second state in which a current flows selectively between the first electrode and the second electrode, and a third state in which a current flows selectively between the first electrode and the third electrode. When any one of the first state, the second state and the third state is configured, voltages V1, Va, Vb and Vc, which satisfy predetermined inequality set corresponding to the one of the first to third states, are applied to the control electrode, the first electrode, the second electrode, and the third electrode, respectively.