摘要:
One aspect of the invention relates to a method for formulating a molecular sieve catalyst composition, the method comprising the steps of: (a) providing a synthesized molecular sieve having been recovered in the presence of a flocculant; (b) thermally treating the synthesized molecular sieve at a temperature from about 50° C. to about 250° C. and under other conditions sufficient to form a thermally treated synthesized molecular sieve having a first LOI less than 26% and a first micropore surface area; (c) aging the thermally treated synthesized molecular sieve for at least one year; (d) analyzing the aged, thermally treated molecular sieve to determine a second micropore surface area, wherein the second micropore surface area is 3% or less lower than the first micropore surface area; and (e) combining the aged, thermally treated synthesized molecular sieve, a binder, and optionally a matrix material to produce an aged, formulated molecular sieve catalyst composition.
摘要:
This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
摘要:
The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a catalyst composition comprising a molecular sieve having a framework including at least [AlO4] and [PO4] tetrahedral units, at least one of a binder and a matrix material and at least one phosphorus compound separate from said molecular sieve wherein, after calcination at 760° C. for 3 hours, said catalyst composition has a microporous surface area in excess of 20% of the microporous surface area of said molecular sieve after calcination at 650° C. in nitrogen for 2 hours. The catalyst composition is particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
摘要:
This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes. In one of its aspects, the invention provides a method of making molecular sieve catalyst particles, the method comprising the steps of: a) providing a solution or suspension of an aluminum-containing inorganic oxide precursor in a liquid medium; b) combining the solution or suspension of aluminum-containing inorganic oxide precursor, for example a mixed aluminum-zirconium oxide precursor, with a molecular sieve, and optionally other formulating agents, to form a catalyst formulation slurry; c) aging the catalyst formulation slurry to generate in said slurry a percentage, or increase in said slurry the existing percentage, of aluminum atoms of the aluminum-containing precursor in the form of oligomers having a sharp 27 Al NMR peak at 62-63 ppm; and d) forming molecular sieve catalyst particles from the catalyst formulation slurry. The catalyst compositions obtained by the methods of the present invention have improved attrition resistance, and are particularly useful in hydrocarbon conversion processes.
摘要:
This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
摘要:
The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a catalyst composition comprising a molecular sieve having a framework including at least [AlO4] and [PO4] tetrahedral units, at least one of a binder and a matrix material and at least one phosphorus compound separate from said molecular sieve wherein, after calcination at 760° C. for 3 hours, said catalyst composition has a microporous surface area in excess of 20% of the microporous surface area of said molecular sieve after calcination at 650° C. in nitrogen for 2 hours. The catalyst composition is particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
摘要:
This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes. In one of its aspects, the invention provides a method of making molecular sieve catalyst particles, the method comprising the steps of: a) providing a solution or suspension of an aluminum-containing inorganic oxide precursor in a liquid medium; b) combining the solution or suspension of aluminum-containing inorganic oxide precursor with a molecular sieve, and optionally other formulating agents, to form a catalyst formulation slurry; c) aging the catalyst formulation slurry to generate in said slurry a percentage, or increase in said slurry the existing percentage, of aluminum atoms of the aluminum-containing precursor in the form of oligomers having a sharp 27Al NMR peak at 62-63 ppm; and d) forming molecular sieve catalyst particles from the catalyst formulation slurry. The catalyst compositions obtained by the methods of the present invention have improved attrition resistance, and are particularly useful in hydrocarbon conversion processes.
摘要:
The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition with a synthesized molecular sieve having been recovered using a flocculant. The formulated composition is particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
摘要:
Disclosed is a method for making molecular sieve catalyst particles. Dried molecular sieve catalyst particles are used to make the catalyst. The dried molecular sieve catalyst particles are put into an aqueous solution and stirred to make a slurry. The slurry is dried to make the molecular sieve catalyst particles. Optionally, the dried molecular sieve catalyst particles made from the slurry are calcined.
摘要:
This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes. In one of its aspects, the invention provides a method of making molecular sieve catalyst particles, the method comprising the steps of: a) providing a solution or suspension of an aluminum-containing inorganic oxide precursor in a liquid medium; b) combining the solution or suspension of aluminum-containing inorganic oxide precursor with a molecular sieve, and optionally other formulating agents, to form a catalyst formulation slurry; c) aging the catalyst formulation slurry to generate in said slurry a percentage, or increase in said slurry the existing percentage, of aluminum atoms of the aluminum-containing precursor in the form of oligomers having a sharp 27 Al NMR peak at 62-63 ppm; and d) forming molecular sieve catalyst particles from the catalyst formulation slurry. The catalyst compositions obtained by the methods of the present invention have improved attrition resistance, and are particularly useful in hydrocarbon conversion processes.