摘要:
A signal splitter includes a low-pass filter circuit for permitting a low-frequency component of an incoming signal in an incoming telephone line coupled to a first connecting port to pass therethrough to a second connecting port, and a coupling circuit including a capacitor coupled between a first terminal of the first connecting port and a second terminal of the second connecting port, and a coupling transformer having a primary winding that interconnects the first terminal of the first connecting port and a first input end of the low-pass filter circuit, and a secondary winding that interconnects the second terminal of the second connecting port and a second output end of the low-pass filter circuit.
摘要:
A signal splitter includes a low-pass filter circuit for permitting a low-frequency component of an incoming signal in an incoming telephone line coupled to a first connecting port to pass therethrough to a second connecting port, and a coupling circuit including a capacitor coupled between a first terminal of the first connecting port and a second terminal of the second connecting port, and a coupling transformer having a primary winding that interconnects the first terminal of the first connecting port and a first input end of the low-pass filter circuit, and a secondary winding that interconnects the second terminal of the second connecting port and a second output end of the low-pass filter circuit.
摘要:
A signal splitter includes a common mode choke circuit that includes a first choke coil having two input nodes coupled to an incoming telephone line, and two output nodes coupled respectively to two first input nodes of a first filter inductor of a first filter circuit, and a second choke coil having two input nodes coupled respectively to two second output nodes of a second filter inductor of a third filter circuit, and two output nodes coupled to a telephony instrument. A second filter circuit includes a first capacitor coupled between two first output nodes of the first filter inductor that are coupled respectively to two second input nodes of the second filter inductor. The third filter circuit further includes a second capacitor coupled between the second output nodes of the second filter inductor.
摘要:
A method for controlling the color contrast of a multi-wavelength light-emitting diode (LED) made according to the present invention is disclosed. The present invention includes at least the step of increasing the junction temperature of a multi-quantum-well LED, such that holes are distributed in a deeper quantum-well layer of the LED to increase luminous intensity of the deeper quantum-well layer, thereby controlling the relative intensity ratios of the multiple wavelengths emitted by the LED. The step of increasing junction temperature of the multi-quantum-well LED is achieved either by controlling resistance through modulating thickness of a p-type electrode layer of the LED or by modifying the mesa area size to control its relative heat radiation surface area.
摘要:
A light emitting diode device is provided, which comprises a substrate comprising a first growth surface and a bottom surface opposite to the first growth surface; a dielectric layer with a plurality of openings therein formed on the first growth surface; a plurality of semiconductor nano-scaled structures formed on the substrate protruding through the openings; a layer formed on the plurality of semiconductor nano-scaled structures with a second growth surface substantially parallel with the bottom surface; a light emitting diode structure formed on the second growth surface; wherein the diameters of the openings are smaller than 250 nm, and wherein the diameters of the plurality semiconductor nano-scaled structures are larger than the diameters of the corresponding openings.
摘要:
A method for controlling the color contrast of a multi-wavelength light-emitting diode (LED) made according to the present invention is disclosed. The present invention includes at least the step of increasing the junction temperature of a multi-quantum-well LED, such that holes are distributed in a deeper quantum-well layer of the LED to increase luminous intensity of the deeper quantum-well layer, thereby controlling the relative intensity ratios of the multiple wavelengths emitted by the LED. The step of increasing junction temperature of the multi-quantum-well LED is achieved either by controlling resistance through modulating thickness of a p-type electrode layer of the LED or by modifying the mesa area size to control its relative heat radiation surface area.