Abstract:
Disclosed is an optical line terminal (OLT), including: N tunable modules, each of the N tunable modules include M tunable transmitters, the number of tuning channels of the M tunable transmitters is greater than or equal to two and the number of the tuning channels is less than M×N, wherein N and M are integers greater than or equal to two.
Abstract:
The present disclosure provides a data transceiving method, a data transceiving device, a wavelength configuration method and a wavelength configuration device. The data transceiving method includes that a first optical module receives control information sent by a second optical module; the first optical module adjusts transmission and receiving wavelengths according to the control information; and the first optical module executes transmission and receiving of data with the second optical module according to the adjusted transmission and receiving wavelengths.
Abstract:
Provided are a link establishment method and apparatus and a computer-readable storage medium. The link establishment method includes: exchanging optical link auto-negotiation information with a terminal device through an optical link auto-negotiation channel; and in a case where exchanging the optical link auto-negotiation information is finished, establishing at least one of a traffic data channel or an optical link auto-negotiation channel; where the optical link auto-negotiation channel is independent of the traffic data channel or the optical link auto-negotiation channel; and the optical link auto-negotiation information includes at least one of information about an operating wavelength channel of the terminal device, an enabled or disabled state of forward error correction with the terminal device, a forward error correction type with the terminal device, or an operating mode of the auxiliary management channel.
Abstract:
Provided are a link establishment method and apparatus and a computer-readable storage medium. The link establishment method includes: exchanging optical link auto-negotiation information with a terminal device through an optical link auto-negotiation channel; and in a case where exchanging the optical link auto-negotiation information is finished, establishing at least one of a traffic data channel or an optical link auto-negotiation channel; where the optical link auto-negotiation channel is independent of the traffic data channel or the optical link auto-negotiation channel; and the optical link auto-negotiation information includes at least one of information about an operating wavelength channel of the terminal device, an enabled or disabled state of forward error correction with the terminal device, a forward error correction type with the terminal device, or an operating mode of the auxiliary management channel.
Abstract:
An optical link channel auto-negotiation method and apparatus, a non-transitory computer-readable storage medium are disclosed. The optical link channel auto-negotiation method may include at least one of the following: configuring a receiving rate, determining whether a receive clock recovered from received data by a physical layer (PHY) module is locked, and in response to determining that the receive clock recovered from the received data by the PHY module is locked, determining that the receiving rate is configured correctly; configuring a first predetermined parameter in response to determining that the receiving rate is configured correctly, determining whether code block data of the PHY module is in a synchronized state, and in response to determining that the code block data of the PHY module is in a synchronized state, determining that the first predetermined parameter is configured correctly.
Abstract:
Provided are wavelength switching and configuration methods and devices for a Passive Optical Network (PON). The switching method includes the following operations. An Optical Network Unit (ONU) responds to a ranging request message sent by an Optical Line Terminal (OLT) on a first uplink wavelength supported by the ONU. The ONU receives ranging information sent by the OLT. The ONU uses the received ranging information as ranging information about a second uplink wavelength of the ONU, and performs data transmission on the second uplink wavelength according to a bandwidth allocation from the OLT. A path transmission time difference caused by a wavelength interval between the first uplink wavelength and the second uplink wavelength is less than a corresponding fault tolerance range when the OLT receives data. The ranging information is obtained by the OLT according to a ranging response sent by the ONU on the first uplink wavelength.
Abstract:
Provided are a method for managing an ONU in a passive optical network, an OLT and a system. The method includes determining a first quiet window and a second quiet window, and allocating the first quiet window to an ONU within a first preset distance range and allocating the second quiet window to an ONU within a second preset distance range, where the distance between the optical line terminal (OLT) and the ONU within the first preset distance range is less than the distance between the OLT and the ONU within the second preset distance range.
Abstract:
A method for managing a multi-wavelength passive optical network, comprising: an optical module extracting a module management signal from a reception signal input from an optical signal interface, where the module management signal carries a management message related to the optical module. The solution can solve the problem that an optical module of a multi-wavelength passive optical network in the related art cannot support the smooth upgrade of a related device to the multi-wavelength passive optical network.
Abstract:
Disclosed is an OLT optical transmission system, which includes: an OLT optical transceiver module configured to send downlink light to a first single-mode waveguide module and receive uplink light input by a multimode waveguide module, the first single-mode waveguide module configured to send the received downlink light to a beam splitting/combination module; the beam splitting/combination module configured to perform beam splitting on the received downlink light to obtain multiple beams of downlink light, send the multiple beams of downlink light to corresponding second single-mode waveguide modules respectively, perform beam combination on multiple beams of received uplink light to obtain one beam of uplink light and send the combined uplink light to the multimode waveguide module; the second single-mode waveguide modules configured to send the multiple beams of received downlink light to multiple corresponding ODNs and send the multiple beams of received uplink light to the beam splitting/combination module; and the multimode waveguide module configured to send the received uplink light to the OLT optical transceiver module the invention discloses a mode coupler and an optical transmission method. By the disclosure, uplink and downlink light multiplexing may be implemented, and in addition, uplink light insertion loss may be reduced.