Abstract:
A spatial channel state information (CSI) feedback technique is incorporated into multiple-input multiple-output mobile communications technologies. User equipment (UE) channel conditions are measured and, based on the measurements, codebook subsets are selected to which indices are assigned and fed back to a base station.
Abstract:
Disclosed are a method for ensuring channel continuity after precoding, a base station, a user equipment (UE), and a computer readable storage medium. The method comprises: the base station notifying the UE of whether a precoding manner with a continuous frequency domain is used in data sent to the UE by the base station, and the base station sending data to the UE according to a precoding manner with a continuous or discontinuous frequency domain. The method further comprises: when the UE determines, according to the notification of the base station, that the precoding manner with a continuous frequency domain is used in the data sent to the UE by the base station, the UE executing an optimized channel estimation and demodulation manner within a processing capability of the UE.
Abstract:
A spatial channel state information (CSI) feedback technique is incorporated into multiple-input multiple-output mobile communications technologies. User equipment (UE) channel conditions are measured and, based on the measurements, codebook subsets are selected to which indices are assigned and fed back to a base station.
Abstract:
The present invention provides a method and apparatus for determining a scheduling gap, wherein, the method comprises: demodulating the NarrowBand Physical Downlink Control Channel in order to determine the initial subframe of the scheduled NarrowBand Physical Downlink Shared Channel (NB-PDSCH) or the NarrowBand Physical Uplink Shared Channel (NB-PUSCH), wherein, the basis for determining the initial subframe comprises at least one of the following: the final subframe of the NB-PDCCH, the final subframe in the search space where the NB-PDCCH is located, the resource allocation within the scheduling window, and the scheduling gap indication. The implementation of the present technical solutions solves the problem of how to determine the scheduling within the NarrowBand system, thereby saving indication expenditure and improving resource usage efficiency.
Abstract:
Disclosed are a spectrum comb signaling notification and sounding reference signal transmission method and device, wherein the spectrum comb signaling notification method includes: a network side configuring and notifying a receiving side of a two-layer comb spectrum signaling, including a first spectrum comb signaling and a second spectrum comb signaling, wherein the two-layer comb spectrum signaling indicates sub-carrier positions of transmitting the sounding reference signals to the receiving side.
Abstract:
A method of selecting resource element for UCI transmission and countering a ping-pong effect includes adjusting transmission parameters without adjusting a channel quality indicator/pre-coding matrix index. The transmission parameters include a modulation coding set of a transport block and a transport block size. Another method of selecting resource element for UCI transmission and countering the ping-pong effect includes selecting a transport block having a highest modulation coding set index or the transport block having a lowest modulation coding set index. Alternatively, the evolved Node B may select the transport block having a largest size or the transport block having the smallest size.
Abstract:
A method and a system for transmitting System Frame Number (SFN) information. The method includes that a base station sets X resource locations for carrying SFN indication information in one SFN information cycle period; and the base station transmits the SFN indication information at at least one resource location in each SFN information cycle period. Moreover, a base station and a terminal are provided in order to improve the coverage performance of a smart metering Machine Type Communication (MTC) terminal device deployed in a low-coverage environment and ensure the normal communication requirement of the MTC terminal device without additional deployment of a site and a relay station.
Abstract:
A method of selecting resource element for UCI transmission and countering a ping-pong effect includes adjusting transmission parameters without adjusting a channel quality indicator/pre-coding matrix index. The transmission parameters include a modulation coding set of a transport block and a transport block size. Another method of selecting resource element for UCI transmission and countering the ping-pong effect includes selecting a transport block having a highest modulation coding set index or the transport block having a lowest modulation coding set index. Alternatively, the evolved Node B may select the transport block having a largest size or the transport block having the smallest size.
Abstract:
A method and a terminal for uplink power control are disclosed. The method comprising: determining the uplink transmit power by a terminal according to a transmission scenario in which the terminal belongs. In embodiments of present disclosure, uplink transmit power is determined by a terminal for uplink transmission, wherein a scheme of uplink power control is achieved.