摘要:
A braking device for an elevator is disclosed. The device may include a motor, a braking system, a first switch, and a second switch. The motor may be capable of generating a counter-electromotive force. The braking system may move to a disengaged position upon being energized and may move to an engaged position upon being de-energized. The first and second switches may have an open state. In the open state, the switches electrically couple the motor to the braking system so that the counter-electromotive force of the motor may energize the braking system.
摘要:
An example elevator machine frame assembly (30) includes a plurality of support plates (32) configured to support at least selected portions of an elevator machine including a traction sheave (24). The support plates each comprise a plurality of mounting surfaces (50) that are aligned within a plane that intersects with an axis of rotation (56) of a traction sheave that is supported by the frame assembly. A plurality of support rods (36) are connected to the support plates (32). The support rods maintain a desired spacing between the plates and a desired alignment of the plates relative to each other. In a disclosed example, the support rods include a sound dampening material (44) such as sand in an interior of the rods.
摘要:
A braking device for an elevator is disclosed. The device may include a motor, a braking system, a first switch, and a second switch. The motor may be capable of generating a counter-electromotive force. The braking system may move to a disengaged position upon being energized and may move to an engaged position upon being de-energized. The first and second switches may have an open state. In the open state, the switches electrically couple the motor to the braking system so that the counter-electromotive force of the motor may energize the braking system.
摘要:
A brake for machine and method of using the brake is disclosed. The brake may comprise first and second brake linings configured to be frictionally engageable with a rail, a first biasing member configured to urge the first brake lining to engage the rail, and a first actuator configured to move the first brake lining (38) to disengage the rail when the first actuator is energized. The brake may be configured to be mounted on a machine, floor or the like.
摘要:
A guide rail (14) for an elevator system (10) includes a base (20) connectable with a wall of a hoistway (12) of the elevator system (10) and a web section (24) connected to and extending from the base (20). A tip section (26) is located at an end of the web section (24) and is operably connectable to an elevator car (16) of the elevator system (10). The base (20), the web section (24) and the tip section (26) are formed of one or more thicknesses (28) of sheet metal material. An elevator system (10) includes an elevator car (16) located in a hoistway (12) and a guide rail (14) extending along the hoistway (12) and operably connected to the elevator car (16) for guiding the elevator car (16) along the hoistway (12). The guide rail (14) is configured such that braking forces applied to the guide rail (14) by a braking mechanism (36) successfully reduce the speed of the elevator car (16) without resulting in failure of the guide rail (14).
摘要:
An exemplary elevator brake device includes a permanent magnet. A core supports the permanent magnet. A first plate is positioned near one side of the core with a first gap between the first plate and the core. A second plate is positioned near another side of the core with a second gap between the second plate and the core. The first and second plates remain fixed relative to each other and are arranged such that relative movement is possible between the core and the plates. An electromagnet selectively influences an amount of magnetic flux across the first and second gaps, respectively, to control a braking force of the brake.
摘要:
An elevator door coupler includes a vane member adapted to be supported on one of a hoistway door or an elevator car door. A magnetic coupler device (500) is adapted to be supported on the other of the hoistway door or the elevator car door to be selectively magnetically coupled with the vane member. The magnetic coupler device includes a plurality of modules (520) each having a core and at least one coil associated with the core. An insulation material (528) occupies a space between the modules for substantially insulating adjacent coils from each other and for maintaining a desired alignment of the modules relative to each other.
摘要:
An exemplary elevator machine frame includes a plurality of support surfaces configured to support at least one of a motor or a brake. A plurality of arms between the support surfaces maintain a desired alignment of support surfaces. At least one of the arms has a first cross section taken transverse to a longitudinal direction along a length of the arm at a first longitudinal location on the arm. That same arm has a second, different cross section at a second, different longitudinal location on the arm.
摘要:
A magnetic bearing with reduced control-flux-induced rotor loss includes a rotor 14, and a stator 12 having a plurality of slots S1-S16 around which coils 150-156 of a first Phase A and coils 160-166 of a second Phase B are wound. The winding configuration provides a two pole magnetic field around a rotor/stator gap 15 which is sinusoidal and which can be directed to any location along the gap 15. The configuration minimizes discontinuities or sharp changes in control flux in the gap which thereby reduces rotor losses. Also, the stator tooth gap g1 is minimized to provide smooth flux distribution along the rotor/stator gap 15. More phases and more or less stator slots may be used.
摘要:
An electronic motor drive produces a required motion profile for an elevator door operator actuated by a three-phase, line-powered linear induction motor (LIM) by means of an array of TRIAC switches producing selected forces from the LIM. The TRIAC drive is capable of producing acceleration, deceleration or free coast in either the open or close direction of door operation. When controlled by an algorithm such as a "time-optimal switch point" or "bang-bang" control, the TRIAC drive produces the required motions from the linear induction motor for elevator door operation. The motor windings may be switchable between delta and wye hookups to provide two distinct thrust levels. Phase angle modulation may be used to provide finer control of thrust. The linear motor may be a 12-slot arrangement having four poles and three phases and arranged with flux emanating from the stationary primary (on the car) to a stationary backiron part of the secondary also mounted on the car, wherein the flux passes through a movable copper part of the secondary attached to the elevator door and passing between the primary and the backiron.