摘要:
A transflective color liquid crystal display (200) with internal rear polarizer (275) has a front polarizer (260), a front substrate (210), a first color filter layer (212), a front transparent electrode (240), a liquid crystal layer (250), a rear transparent electrode (230), a rear polarizer (275), a reflector (235), and a rear substrate (220). The inclusion of an internal rear polarizer (275) results in little optical path difference between a reflective mode and a transmissive mode of the transflective color LCD (200). The internal rear polarizer (275) also results in little parallax, because the internal reflector (235) is very close to an image-forming layer (250). Additionally, a second color filter layer (214) can be added behind the internal reflector (235) to enhance the brightness and color saturation of the transflective color LCD (200) with internal rear polarizer (275) during the transmissive mode.
摘要:
Disclosed are circuits and user interfaces of a mobile communication device that include a light source and a shutter that are driven by at least one common voltage line. Also disclosed are circuits and user interfaces of a mobile communication device that include a sensor and a shutter that are driven by at least one common voltage line. Further disclosed are circuits and user interfaces that include a light source, a sensor and a shutter that are driven by at least one common voltage line. The shutter may be divided into a plurality of segments so that one segment may be in optical alignment with a light source and another segment may be in optical alignment with a sensor. A shutter may be part of the same circuit as a light source and/or a sensor without needing its own circuit and driver.
摘要:
In accordance with one embodiment, apparatus are provided, which include a burn-in compensation pixel generator and burn-in compensation circuitry. The burn-in compensation pixel generator is configured to generate burn-in compensation pixel data. The burn-in compensation circuitry is configured to provide, within break-from-standard-use periods of a device employing a display, the generated burn-in compensation pixel data instead of a select predetermined subset of default pixel data, for input to a display interface of the display.
摘要:
Disclosed is reflective morphable display with multi-layered depth viewing, low power consumption and few components and a method of activating various features thereof. The disclosed display includes a bi-stable reflective cholesteric liquid display crystal (ChLCD) layered in combination with a display device such as an LCD and a quarter lambda (λ/4) retardation film layer. Linearly polarized light emerging from the front surface of a display device is circularly polarized by the λ/4 layer before entering the ChLCD layer. In its reflective state, the ChLCD layer receiving a portion of the ambient light having the same handedness of the ChLCD is reflected in a mirror-like manner. Also in its reflective state, when it receives light that is circularly polarized by the λ/4 retardation film layer, the ChLCD layer acts as a shutter. A display device with depth viewing is provided as the ChLCD layer pixelated so it is configured to display font and/or other indicia.
摘要:
A user interface (200) for a portable electronic device (100) is configured to transition from a first state to a second state to present a plurality of mode-based user actuation targets to a user. The user interface (200) includes a segmented electro-optical device (407) configured to open and close shutters, thereby revealing and hiding the user actuation targets. The user interface includes a first polarizer (401) disposed above the segmented electro-optical device (407) and a colored reflective polarizer (405) disposed beneath the segmented electro-optical device. The colored reflective polarizer (405), which may include a colored dichroic polarizer (601) and a reflective polarizer (602), causes the user interface (200) to exhibit a predetermined color.
摘要:
A method and apparatus are provided for correcting burn-in in a flat screen display. The method includes the steps of determining a maximum cumulative luminance of each pixel (15) within the display (14) based upon a usage of the pixel, providing a modulation map (40) of the display (14) from the maximum cumulative luminance of each pixel (15) within the display (14), transforming the modulation map (40) based upon the maximum cumulative luminance of groups of adjacent pixels to provide a modulation index for each pixel location of the map (40), comparing the modulation indexes with a set of threshold values and adjusting a luminosity of associated pixels (15) of the display (40) when the modulation index exceeds the threshold.
摘要:
A method and system for adjusting luminance in a display device including displaying an image with saturated colors, and adjusting luminance settings of sub-pixels so that a relative luminance ratio between full white color and any fully saturated color is within approximately 25 percent of a reference relative luminance ratio between the full white color and the same fully saturated color in an equivalent display device including red, green and blue sub-pixels.
摘要:
A display stack-up (300) is provided for a mobile electronic device (100) having an internal and external display, for example, a clamshell style mobile phone. The display stack-up comprises a backlight unit (114) and an external display device (110) having bi-stable optical states. The external display device (110) is placed in contact with, and is optically coupled to, the backlight unit (114). The display stack-up further comprises an internal display device (106) which is placed in contact with, and is optically coupled to, the external display device (110).
摘要:
A method and apparatus are provided for detecting activation of a touch panel (16). The method includes the steps of providing an N by M touch panel (16) including a matrix of N rows of touch elements (22, 26) along a first axis and M columns of touch elements (22, 28) along a second axis, providing N optical beams (60, 62) where a characteristic of each beam of the N beams is different than the corresponding characteristic of any other of the N optical beams, where the summation of a characteristic any first group of the N optical beams (60, 62) is different than the summation the corresponding characteristic of any other N beams (60, 62) and where each respective beam of the N optical beams corresponds to an input of each of the N rows; and summing the characteristic from an output of each of the N rows. The method further includes the steps of providing M optical beams (60, 62) where a characteristic of each beam of the M beam (60, 62) is different than the corresponding characteristic of any other of the M optical beams, where the summation of a characteristic of any first group of the M optical beams is different than the summation the corresponding characteristic of any other M beams and where each respective beam of the M optical beams corresponds to an input of each of the M columns, summing the characteristic from an output of each of the M columns and unambiguously identifying a touch element or multi-touch elements (22, 26, 28) of the N rows and M columns of touch elements based upon the summation of the outputs.
摘要:
An multi-touch detection system (100) separately determines each of the coordinates of multiple touches and is able to correctly pair the coordinates, the touch panel includes multiple (e.g., two or four) separate sections (104, 106, 404, 406, 504, 506, 508, 510) to detect touches in different areas. The system (100) is able to operate at high refresh rates allowing speed sensitive applications to be supported.