摘要:
A method and system provides an EAMR transducer. The transducer is coupled with a laser for providing energy and has an air-bearing surface (ABS) configured to reside in proximity to a media during use. The EAMR transducer includes a near field transducer (NFT) for focusing the energy onto the region of the media, a write pole, and at least one coil for energizing the write pole. The NFT includes a ring portion having an aperture therein and a pin portion proximate to the ABS. The write pole is configured to write to a region of the media.
摘要:
Embodiments of the present invention are directed toward a bi-layer spacer structure and related fabrication processes for improving an interface between a near-field transducer (NFT) and a spacer on an optical waveguide core for an energy assisted magnetic recording (EAMR) system. The embodiments provide a solution for improving the adhesion between the NFT and the spacer.
摘要:
A structure for measuring energy absorption by a surface plasmon receptor or NFT on a waveguide comprises a first waveguide, a first input grating for coupling light comprising a first wavelength into the first waveguide, a first output grating for coupling light out of the first waveguide, a first plurality of surface plasmon receptors in cooperation with the first waveguide to receive light energy and located between the first input grating and the first output grating. The structure may further comprise a second waveguide, a second input grating for coupling light into the second waveguide, a second output grating for coupling light out of the second waveguide, a second plurality of surface plasmon receptors between the second input grating and the second output grating and in cooperation with the second waveguide to receive light energy, wherein the second plurality may be less than or greater than the first plurality.
摘要:
A method and system for fabricating transducer having an air-bearing surface (ABS) is described. The method and system include providing at least one near-field transducer (NFT) film and providing an electronic lapping guide (ELG) film substantially coplanar with a portion of the at least one NFT film. The method and system also include defining a disk portion of an NFT from the portion of the at least one NFT film and at least one ELG from the ELG film. The disk portion corresponds to a critical dimension of the NFT from an ABS location. The method and system also include lapping the at least one transducer. The lapping is terminated based on a signal from the ELG.
摘要:
A method and system provides a near-field transducer (NFT) for an energy assisted magnetic recording (EAMR) transducer. The method and system include forming a sacrificial NFT structure having a shape a location corresponding to the NFT. A dielectric layer is deposited. A portion of the dielectric layer resides on the sacrificial NFT structure. At least this portion of the dielectric layer on the sacrificial structure is removed. The sacrificial NFT structure is removed, exposing an NFT trench in the dielectric layer. At least one conductive layer for the NFT is deposited. A first portion of the conductive layer(s) reside in the NFT trench. A second portion of the conductive layer(s) external to the NFT trench is removed to form the NFT.
摘要:
A method provides an EAMR transducer. The EAMR transducer is coupled with a laser and has an ABS configured to reside in proximity to a media during use. The method includes providing an NFT using an NFT mask. The NFT resides proximate to the ABS and focuses the laser energy onto the media. A portion of the NFT mask is removed, forming a heat sink mask covering part of the NFT. Optical material(s) are deposited, covering the heat sink mask and the NFT. The heat sink mask is removed, providing an aperture in the optical material(s). A heat sink corresponding to the aperture is provided. The heat sink bottom is thermally coupled with the NFT. A write pole for writing to the media and coil(s) for energizing the write pole are provided. The write pole has a bottom surface thermally coupled with the top surface of the heat sink.
摘要:
A method provides an EAMR transducer. The EAMR transducer is coupled with a laser and has an ABS configured to reside in proximity to a media during use. The EAMR transducer includes an NFT for focusing the energy onto the media. A sacrificial layer is deposited on the NFT and a mask having an aperture provided on the sacrificial layer. A portion of the sacrificial layer exposed by the aperture is removed to form a trench above the NFT. A heat sink is then provided. At least part of the heat sink resides in the trench. The heat sink is thermally coupled to the NFT. Optical material(s) are provided around the heat sink. A write pole configured to write to a region of the media is also provided. The write pole is thermally coupled with the top of the heat sink. Coil(s) for energizing the write pole are also provided.
摘要:
A method fabricates a transducer having an air-bearing surface (ABS). The method includes providing at least one near-field transducer (NFT) film and providing an electronic lapping guide (ELG) film substantially coplanar with a portion of the at least one NFT film. The method also includes defining a disk portion of an NFT from the portion of the at least one NFT film and at least one ELG from the ELG film. The disk portion corresponds to a critical dimension of the NFT from an ABS location. The method also includes lapping the at least one transducer. The lapping is terminated based on a signal from the ELG.
摘要:
A method of forming a near field transducer (NFT) for energy assisted magnetic recording is disclosed. A structure comprising an NFT metal layer and a first hardmask layer over the NFT metal layer is provided A first patterned hardmask is formed from the first hardmask layer, the first patterned hardmask disposed over a disk section and a pin section of the NFT to be formed. An etch process is performed on the NFT metal layer via the first patterned hardmask, the etch process forming the NFT having the disk section and the pin section.
摘要:
An energy assisted magnetic recording (EAMR) disk drive comprises a suspension and a slider having a back side, a laser-facing surface, and an air-bearing surface (ABS) opposite the back side. The slider is mounted to the suspension on the back side. The disk drive further comprises an EAMR transducer coupled with the slider, a portion of the EAMR transducer residing in proximity to the ABS and on the laser-facing surface of the slider. The disk drive further comprises a laser coupled with the suspension and having a light emitting surface facing the laser-facing surface of the slider. The laser has an optic axis substantially parallel to the suspension. The laser provides energy substantially along the optic axis and is optically coupled with the EAMR transducer via free space. The EAMR transducer receives the energy from the laser and writes to the media using the energy.