摘要:
One embodiment of the present invention sets forth a technique for redistributing geometric primitives generated by tessellation and geometry shaders for processing by multiple graphics pipelines. Geometric primitives that are generated in a first processing cycle are collected and redistributed more evenly and in smaller tasks to the multiple graphics pipelines for vertex processing in a second processing cycle. The smaller tasks do not exceed the resource limits of a graphics pipeline and the per-vertex processing workloads of the graphics pipelines in the second cycle are balanced and make full use of resources. Therefore, the performance of the tessellation and geometry shaders is improved.
摘要:
One embodiment of the present invention sets forth a technique for redistributing geometric primitives generated by tessellation and geometry shaders for processing by multiple graphics pipelines. Geometric primitives that are generated in a first processing cycle are collected and redistributed more evenly and in smaller tasks to the multiple graphics pipelines for vertex processing in a second processing cycle. The smaller tasks do not exceed the resource limits of a graphics pipeline and the per-vertex processing workloads of the graphics pipelines in the second cycle are balanced and make full use of resources. Therefore, the performance of the tessellation and geometry shaders is improved.
摘要:
One embodiment of the present invention sets forth a technique for redistributing geometric primitives generated by tessellation and geometry shaders for per-vertex by multiple graphics pipelines. Geometric primitives that are generated in a first processing stage are collected and redistributed more evenly and in smaller batches to the multiple graphics pipelines for vertex processing in a second processing stage. The smaller batches do not exceed the resource limits of a graphics pipeline and the per-vertex processing workloads of the graphics pipelines in the second stage are balanced. Therefore, the performance of the tessellation and geometry shaders is improved.
摘要:
One embodiment of the present invention sets forth a technique for redistributing geometric primitives generated by tessellation and geometry shaders for per-vertex by multiple graphics pipelines. Geometric primitives that are generated in a first processing stage are collected and redistributed more evenly and in smaller batches to the multiple graphics pipelines for vertex processing in a second processing stage. The smaller batches do not exceed the resource limits of a graphics pipeline and the per-vertex processing workloads of the graphics pipelines in the second stage are balanced. Therefore, the performance of the tessellation and geometry shaders is improved.
摘要:
One embodiment of the present invention sets forth a technique for using a shared memory to store hardware-managed virtual buffers. A circular buffer is allocated within a general-purpose multi-use cache for storage of primitive attribute data rather than having a dedicated buffer for the storage of the primitive attribute data. The general-purpose multi-use cache is also configured to store other graphics data sinces the space requirement for primitive attribute data storage is highly variable, depending on the number of attributes and the size of primitives. Entries in the circular buffer are allocated as needed and released and invalidated after the primitive attribute data has been consumed. An address to the circular buffer entry is transmitted along with primitive descriptors from object-space processing to the distributed processing in screen-space.
摘要:
One embodiment of the present invention sets forth a technique for parallel distribution of primitives to multiple rasterizers. Multiple, independent geometry units perform geometry processing concurrently on different graphics primitives. A primitive distribution scheme delivers primitives from the multiple geometry units concurrently to multiple rasterizers at rates of multiple primitives per clock. The multiple, independent rasterizer units perform rasterization concurrently on one or more graphics primitives, enabling the rendering of multiple primitives per system clock.
摘要:
One embodiment of the present invention sets forth a technique for parallel distribution of primitives to multiple rasterizers. Multiple, independent geometry units perform geometry processing concurrently on different graphics primitives. A primitive distribution scheme delivers primitives from the multiple geometry units concurrently to multiple rasterizers at rates of multiple primitives per clock. The multiple, independent rasterizer units perform rasterization concurrently on one or more graphics primitives, enabling the rendering of multiple primitives per system clock.
摘要:
A work distribution unit distributes work batches to general processing clusters (GPCs) based on the number of streaming multiprocessors included in each GPC. Advantageously, each GPC receives an amount of work that is proportional to the amount of processing power afforded by the GPC. Embodiments include a method for distributing batches of processing tasks to two or more general processing clusters (GPCs), including the steps of updating a counter value for each of the two or more GPCs based on the number of enabled parallel processing units within each of the two or more GPCs, and distributing a batch of processing tasks to a first GPC of the two or more GPCs based on a counter value associated with the first GPC and based on a load signal received from the first GPC.
摘要:
An apparatus for displaying a polygon on a horizontal scan display device having a plurality of pixels includes first and second rasterizers that each process respective first and second sets of pixels. Each set of pixels includes vertical stripes that are transverse to the horizontal scan of the display. To that end, the first rasterizer has an input for receiving polygon data relating to the polygon. The first rasterizer determines a first set of pixels that are to be lit for display of the polygon, and also determines display characteristics of the first set of pixels. In a similar manner, the second rasterizer also includes an input for receiving polygon data relating to the polygon. The second rasterizer similarly determines a second set of pixels that are to be lit for display of the polygon, and also determines display characteristics of the second set of pixels. The first and second sets of pixels have no common pixels and are vertical stripes of pixels on the display device that are transverse to the direction of the horizontal scan.
摘要:
In a graphics processing pipeline, a processing unit establishes a bounding box around a polygon in order to identify sample points that are covered by the polygon. For a given sample point included within the bounding box, the processing unit constructs a set of lines that intersect at the sample point, where each line in the set of lines is parallel to at least one side of the polygon. When all vertices of the polygon reside on one side of at least one line in the set of lines, the processing unit may reduce the size of the bounding box to exclude the sample point.