摘要:
Enhanced oligomeric polyols are reported. The enhanced oligomeric polyols may be prepared by a method comprising the steps of: (a) providing an oligomeric polyol that comprises at least one glycerol fatty acid ester having at least one glycerol fatty acid ester bond; wherein at least 5% of the ethyldenyl groups (*C═C*) in the glycerol fatty acid ester are substituted with a bonding structure selected from the group consisting of: C-*C—C*-C; O-*C—C*-O; C=*C—C*-C, and mixtures thereof, where * is used to denote the original carbon atoms in the ethylidenyl group; and (b) cleaving at least a portion of the glycerol fatty acid ester bonds to form the enhanced oligomeric polyol. The enhanced oligomeric polyols are useful in making polymers such as polyurethanes.
摘要翻译:报道了增强低聚多元醇。 增强的低聚多元醇可以通过包括以下步骤的方法制备:(a)提供包含至少一种具有至少一种甘油脂肪酸酯键的甘油脂肪酸酯的低聚多元醇; 其中所述甘油脂肪酸酯中的至少5%的乙烯基(* C = C *)被选自以下的键合结构取代:C- * C-C * -C; O- * C-C * -O; C = * C-C * -C及其混合物,其中*用于表示亚乙基中的原始碳原子; 和(b)切割甘油脂肪酸酯键的至少一部分以形成增强的低聚多元醇。 增强的低聚多元醇可用于制备聚合物如聚氨酯。
摘要:
Enhanced oligomeric polyols are reported. The enhanced oligomeric polyols may be prepared by a method comprising the steps of: (a) providing an oligomeric polyol that comprises at least one glycerol fatty acid ester having at least one glycerol fatty acid ester bond; wherein at least 5% of the ethyldenyl groups (*C═C*) in the glycerol fatty acid ester are substituted with a bonding structure selected from the group consisting of: C—*C—C*—C; O—*C—C*—O; C═*C—C*—C, and mixtures thereof, where * is used to denote the original carbon atoms in the ethylidenyl group; and (b) cleaving at least a portion of the glycerol fatty acid ester bonds to form the enhanced oligomeric polyol. The enhanced oligomeric polyols are useful in making polymers such as polyurethanes.
摘要:
A method of producing a foam is disclosed. The method includes providing an epoxy-containing compound, a cationic catalyst, an optional blowing agent, and at least one additive. The method further includes combining the epoxy-containing compound with the cationic catalyst, the optional blowing agent, and the at least one additive, wherein the epoxy-containing compound and the cationic catalyst react to polymerize the epoxy-containing compound to provide the foam having a density from about 0.3 lbs/ft3 to about 5.0 lbs/ft3 as measured by ASTM D1622. Further disclosed are the foam and a method for installing the foam.
摘要:
An isocyanate prepolymer for application in polyurethanes. The prepolymer is synthesized by combining epoxidized natural oils with isocyanates and a catalyst. The prepolymer contains oxazolidone rings that will react with polyols to form polyurethane. The invention provides a method of using a renewable resource in a fast, simple process to produce substantial amounts of isocyanate prepolymer and a minimum of homopolymers.
摘要:
Methods of making unsaturated modified vegetable oil-based polyols are described. Also described are methods of making oligomeric modified vegetable oil-based polyols. An oligomeric composition having a modified fatty acid triglyceride structure is also described. Also, methods of making a polyol including hydroformylation and hydrogenation of oils in the presence of a catalyst and support are described.
摘要:
A polymerization reaction mixture for the cationic polymerization of unsaturated biological oils (e.g. vegetable oils and animals oils) based on the cationic reaction of double bonds initiated by superacids is provided. The polymerized oils have a viscosity about 10 to 200 times higher than the initial oil and relatively high unsaturation (only about 10-30% lower than that of initial oils).
摘要:
A method of making a biobased-petrochemical hybrid polyol is provided. This method includes reacting a cyclic ether with a vegetable oil-based polyol in the presence of a cationic catalyst or a coordinative catalyst that includes a vegetable oil-based polyol ligand to form the biobased-petrochemical hybrid polyol. The biobased-petrochemical hybrid polyol that is created has a number average molecular weight of about 3,000 to about 6,000 and has a structure that is about 22% to about 36% biobased. In one aspect of the present invention, the cyclic ether is propylene oxide, and the propoxylated polyol formed from the propylene oxide and vegetable oil-based polyol is then reacted with ethylene oxide in the presence of a superacid catalyst to create a block copolymer with a terminal polyethylene oxide block having a high percentage of terminal primary hydroxyl groups. If the cyclic ether is a homogeneous mixture of ethylene oxide and propylene oxide, then propylene oxide-ethylene oxide random copolymers are formed by polyaddition to vegetable oil polyols. The biobased-petrochemical hybrid polyol may be reacted with an isocyanate so as to create a flexible polyurethane that has good hydrolytic resistance.
摘要:
A method for the cationic polymerization of unsaturated biological oils (e.g., vegetable oils and animal oils) based on the cationic reaction of double bonds initiated by superacids is provided. The process occurs under very mild reaction conditions (about 70-110° C. and atmospheric pressure) and with short reaction times. The polymerized oils have a viscosity about 10 to 200 times higher than the initial oil and relatively high unsaturation (only about 10-30% lower than that of initial oils).
摘要:
A polymerization reaction mixture for the cationic polymerization of unsaturated biological oils (e.g. vegetable oils and animals oils) based on the cationic reaction of double bonds initiated by superacids is provided. The polymerized oils have a viscosity about 10 to 200 times higher than the initial oil and relatively high unsaturation (only about 10-30% lower than that of initial oils).
摘要:
A method for the cationic polymerization of unsaturated biological oils (e.g., vegetable oils and animal oils) based on the cationic reaction of double bonds initiated by superacids is provided. The process occurs under very mild reaction conditions (about 70-110° C. and atmospheric pressure) and with short reaction times. The polymerized oils have a viscosity about 10 to 200 times higher than the initial oil and relatively high unsaturation (only about 10-30% lower than that of initial oils).