Abstract:
In some embodiments, there is provided a scrubber system for cleaning return air in an HVAC unit, where the scrubber system attaches directly to an inlet of the return-air side of the HVAC unit, for example, by the mating of a flange on the system with a matching flange on the HVAC unit. The bolt-on scrubber system may comprise one or more sorbent materials, a fan for circulating return air through the sorbent, a damper-controlled inlet and a damper-controlled outlet to the attached return air side of the HVAC unit. Further, an additional air flow channel and a damper may be included in the system to control the flow of outside air into the HVAC unit. In some embodiments, the sorbents may be contained in removable inserts.
Abstract:
Air treatment modules, systems and methods for removing contaminants from indoor air are provided. Device embodiments may include one or more air inlets, one or more air outlets and a plurality of inserts which each include at least one adsorbent material. The inserts may be arranged separate from each other to form a plurality of substantially parallel air flow paths between the one or more air inlets and one or more air outlets. The adsorbent material may be arranged for regeneration within the air treatment module using thermal swing desorption and/or pressure swing desorption. Related systems, methods and articles of manufacture are also described.
Abstract:
Systems, devices and methods for submarine CO2 scrubbing are disclosed. The system may comprise an assembly including a sorbent, a scrubbing inlet configured to receive a first airflow during an adsorption mode. The first airflow may comprise air received from a cabin of a submarine. The assembly may be configured to flow the first airflow over and/or through the sorbent during the adsorption mode such that the sorbent removes a portion of CO2 entrained in the first airflow. The system may also include a scrubbing outlet configured to expel the scrubbed first airflow from the assembly into the cabin. The system may include an outside air inlet configured to receive a second airflow comprising outside air during a regeneration mode. The system may include a regeneration air outlet in configured to expel the second airflow after the second airflow has flowed over and/or through the sorbent during the regeneration mode.
Abstract:
Embodiments of the present disclosure include methods and systems of circulating air in an enclosed environment. In such embodiments, the system may comprise an air handling unit (AHU), the AHU including an indoor air inlet to receive an indoor airflow from the enclosed environment and an indoor air outlet to expel the indoor airflow, a conditioning element arranged between the inlet and the outlet configured to at least heat or cool the indoor airflow as it flows thereover, one or more fan units arranged between the inlet and the outlet configured to provide velocity to the indoor airflow, and an air treatment assembly (ATA) arranged within or proximate the AHU, the ATA including an air inlet configured to receive a portion of the indoor airflow received by the AHU indoor air inlet.
Abstract:
Embodiments of the present disclosure are directed to systems and methods for regenerating a sorbent material of a scrubber, configured for scrubbing a contaminant from indoor air from an enclosed space. Some embodiments include a sorbent material portion (SMP) including a sorbent material, which may be configured to be cycled between an adsorption phase for adsorbing a contaminant from indoor air, and a regeneration phase configured for releasing at least a portion of the contaminant adsorbed by the sorbent material during the adsorption phase thereof, via temperature swing adsorption, into a purging airflow.
Abstract:
Methods and systems for a heating, ventilation, and air-conditioning (HVAC) system for an enclosed environment may be configured to at least one of heat and cool air and include an air circulation system configured to circulate air at least within the enclosed environment. The air within the enclosed environment may comprise at least the indoor air. The system may further include an outdoor air inlet for introducing at least a portion of outdoor air into the enclosed environment, where the outdoor air comprises air from outside the enclosed environment. The system may further include a scrubbing system having an adsorbent material to reduce presence of at least one gas contaminant in the indoor air. A controller system may be included for controlling the operation of at least one of the circulation system and the scrubbing system.
Abstract:
Embodiments of the present disclosure are directed to systems and methods for regenerating a sorbent material of a scrubber, configured for scrubbing a contaminant from indoor air from an enclosed space. Some embodiments include a sorbent material portion (SMP) including a sorbent material, which may be configured to be cycled between an adsorption phase for adsorbing a contaminant from indoor air, and a regeneration phase configured for releasing at least a portion of the contaminant adsorbed by the sorbent material during the adsorption phase thereof, via temperature swing adsorption, into a purging airflow.
Abstract:
Method, systems, and devices for determining instantaneous heat exchange between an airflow and a heat exchange element of an HVAC system are disclosed. In some embodiments, methods and systems include receiving or otherwise obtaining airflow data, temperature and humidity data. The airflow data may be used to calculate the volumetric airflow rate, and the temperature and humidity data may be processed with enthalpy data to determine the change in enthalpy (Δh) of the airflow after encountering a heat exchange element. The instantaneous rate of heat exchange (E) between the airflow and the heat exchange element may then be determined from the volumetric airflow rate and change in enthalpy.
Abstract:
Some embodiments of the disclosure correspond to, for example, a method for controlling a scrubber containing an adsorbent. The scrubber may be configured to cycle between scrubbing at least one pollutant/gas from a stream of gases with the pollutant/gas being adsorbed onto the adsorbent, and regenerating at least some of the adsorbent and thereby purging at least some of the one pollutant and/or first gas from the adsorbent via a regeneration gas flow. The method may include flowing a stream of gases through the scrubber, the scrubber including the adsorbent and adsorbing at least some of the one pollutant/gas from the stream of gases onto the adsorbent during an adsorption phase over a first time period. The method may also include purging at least a portion of the one pollutant/ gas from the adsorbent during a regeneration phase over a second time period with a regeneration gas flow, and cycling therebetween. Some other embodiments of the disclosure, for example, include an air treatment assembly which includes an adsorbent for adsorbing at least on pollutant/gas from a flow of air in one direction, and purging at least some of the adsorbed pollut -ant/gas from the adsorbent with a regeneration air flow to regenerate the adsorbent.
Abstract:
Embodiments of the present disclosure include methods and systems of circulating air in an enclosed environment. In such embodiments, the system may comprise an air handling unit (AHU), the AHU including an indoor air inlet to receive an indoor airflow from the enclosed environment and an indoor air outlet to expel the indoor airflow, a conditioning element arranged between the inlet and the outlet configured to at least heat or cool the indoor airflow as it flows thereover, one or more fan units arranged between the inlet and the outlet configured to provide velocity to the indoor airflow, and an air treatment assembly (ATA) arranged within or proximate the AHD, the ATA including an air inlet configured to receive a portion of the indoor airflow received by the AHU indoor air inlet.