摘要:
Disclosed herein is a method of identifying a unidentified substance, comprising directing light from a light emitting source directly upon a stationary unidentified substance; collecting fluorescence from the unidentified substance in a detector; wherein the detector comprises a lock-in detection system; analyzing the fluorescence; and identifying the unidentified substance. Disclosed herein is a detection system comprising a light emitting source; a circuit board; wherein the trigger is operative to trigger a pulse of electrons from the circuit board to the light emitting source; a detector; and a central processing unit, wherein fluorescence generated from an unknown unidentified substance that is illuminated by light from the light emitting source is collected in the detector and analyzed in the central processing unit.
摘要:
A method for determining a location and characterization of an object using a magnetic gradient tensor measurement of the object is provided. The method includes determining an object magnetic field candidate predicted from one of an object measured magnetic field gradient and an assumed object magnetic moment magnitude, and determining an object vector location and an object vector magnetic moment by combining the object magnetic field candidate with an object measured magnetic field.
摘要:
According to one embodiment, a micro-electrical mechanical system apparatus includes a bi-stable actuator and at least one movable Fabry-Perot filter cavity mirror coupled to the bi-stable actuator. The bi-stable actuator may be associated with a first latched position and a second latched position and may comprise, for example, a thermal device, an electrostatic device (e.g., a parallel plate or comb drive), or a magnetic device. According to some embodiments, a relationship between a voltage applied to an actuator of a Fabry-Perot filter and an amount of displacement associated with a movable mirror is substantially linear.
摘要:
An integrated detection system that includes a first threat detection apparatus and a second threat detection apparatus is provided. The first threat detection apparatus may identify one or more areas within an item of baggage that may contain threats. Example threats include, but are not limited to, explosives, weapons, illegal drugs, and hazardous matter, among others. The remaining areas are in theory deemed clear of threats. The second threat detection apparatus may be configured to inspect only the suspect areas of the item of baggage that was previously identified by the first threat detection apparatus. This improves throughput and lowers the false positive rate. A method for intelligently fusing the independent information obtained by the first and second threat detection apparatuses is also provided.
摘要:
A lateral flow device is disclosed. The lateral flow device includes a substrate having a flow path and a detection zone disposed along the flow path. The detection zone includes an immobilized target-binding moiety directed against a target of a Raman-active complex. Also disclosed is a method of conducting a lateral flow assay and detection system. The method includes i) defining a flow path having a detection zone; ii) flowing a sample down the flow path; and iii) immobilizing a Raman-active complex if present, at the detection zone. The sample includes a Raman-active complex or a Raman-active tag.
摘要:
A device is provided for testing surfaces of a card for the presence of explosives, drugs or other substances of interest. The device includes a slot for receiving the card. Thin metallic wiper blades are dispose in alignment with the slot and wipe over surfaces of the card as the card is passed through the slot. Thus, substances on the surface of the card are transferred to the wiper blade. The wiper blade then is enclosed and rapidly heated to desorb the material retrieved from the card. The enclosure then is placed in communication with a detector to test for the presence of substances of interest.
摘要:
The invention relates to an electron window 1 for a liquid-metal anode 2 in the form of a membrane 4. It is provided according to the invention that the electron window 1 has ridges 10 and depressions 11. In addition, the invention relates to a liquid-metal anode 2 into which such an electron window 1 according to the invention is inserted. The invention further relates to an X-radiator which has a liquid-metal anode 2 according to the invention. The invention also relates to a method for operating a liquid-metal anode 2 in which, during the production of X-radiation, stronger turbulence 5 is produced in the flow of the liquid metal below the electron window 1 at the ridges 10.
摘要:
A nonintrusive inspection apparatus is described of the kind having a base frame, an elongated shield on the base frame, a conveyor belt passing through the shield which is used for transporting closed containers, and a rotating CT scanner subsystem which is used for scanning the container on the conveyor belt. The CT scanner subsystem is mounted through the shield to the base frame. The shield provides sufficient rigidity for the CT scanner subsystem. A cover is positioned over the CT scanner subsystem, but only over a portion of the shield, thereby allowing for a person on one side of the shield to see a person on an opposite side of the shield.
摘要:
An X-ray computed tomography scanning system for inspecting an object includes a platform configured to support the object. The platform is rotatable about an axis and movable in a direction parallel to the axis. At least one X-ray source is fixedly positioned with respect to the platform and configured to transmit radiation through the object. At least one X-ray detector is fixedly positioned with respect to the platform. The at least one X-ray detector is configured to detect the radiation transmitted through the object and generate a signal representative of the detected radiation.
摘要:
Disclosed herein are scintillating materials, methods for their manufacture, and method for their use. In one embodiment, a scintillator comprises the formula A2LnBX6, wherein A comprises thallium (Tl), a Group IA element, and combinations comprising at least one of the foregoing, Ln comprises cerium, B comprises a Group IA element, and X comprises iodine (I) or an iodine compound, wherein the iodine compound comprises iodine (I) and an element selected from the group consisting of fluoride (F), chloride (Cl), bromide (Br), and combinations comprising at least one of the foregoing. Also disclosed are radiation detectors and methods for their use.