Sensor system
    1.
    发明授权

    公开(公告)号:US12085417B2

    公开(公告)日:2024-09-10

    申请号:US17953111

    申请日:2022-09-26

    Abstract: Described are systems and methods to provide agnostic sensor data obtained from a sensor and transmitted to a central database by a transmitter device. In one aspect, a value sensed by a sensor component is converted at the transmitter device to an agnostic value defined by a dimensionless universal scale and offset. The agnostic value is then sent to a data acquisition database where it is converted back to the original value. This is accomplished by first providing the data acquisition database with a sensor definition of a scale and offset used to convert the sensor values in addition to any sensor indicia and other parameters to display the data acquired at the data acquisition database. The wireless sensors database and user interface are also automatically updated when a new sensor type is attached to the network utilizing configuration data that resides in the new sensor that is sent to the database on its first connection.

    SENSOR SYSTEM
    2.
    发明申请

    公开(公告)号:US20230020349A1

    公开(公告)日:2023-01-19

    申请号:US17952967

    申请日:2022-09-26

    Abstract: Described are systems and methods to provide agnostic sensor data obtained from a sensor and transmitted to a central database by a transmitter device. In one aspect, a value sensed by a sensor component is converted at the transmitter device to an agnostic value defined by a dimensionless universal scale and offset. The agnostic value is then sent to a data acquisition database where it is converted back to the original value. This is accomplished by first providing the data acquisition database with a sensor definition of a scale and offset used to convert the sensor values in addition to any sensor indicia and other parameters to display the data acquired at the data acquisition database. The wireless sensors database and user interface are also automatically updated when a new sensor type is attached to the network utilizing configuration data that resides in the new sensor that is sent to the database on its first connection.

    Hopping scheme for embedded wireless sensors

    公开(公告)号:US11553442B2

    公开(公告)日:2023-01-10

    申请号:US17359323

    申请日:2021-06-25

    Abstract: A wireless communication method to alter RF regulatory channel hopping requirements (regulations) between a pair of transceivers is envisioned wherein an embedded transceiver embedded in an RF attenuating medium transmits signals at a lower hopping requirement than a paired open-air transceiver. The communication method adheres to these regulations, which define a threshold power for transmission above which require a high degree of frequency hopping. Because the attenuating medium attenuates the open-air RF signal from the embedded transceiver, channel hopping in the embedded transceiver is lowered however, the channel hopping in the open-air transceiver is not lowered. The two transceivers are essentially powered equally.

    SENSOR SYSTEM
    7.
    发明申请

    公开(公告)号:US20230017531A1

    公开(公告)日:2023-01-19

    申请号:US17953111

    申请日:2022-09-26

    Abstract: Described are systems and methods to provide agnostic sensor data obtained from a sensor and transmitted to a central database by a transmitter device. In one aspect, a value sensed by a sensor component is converted at the transmitter device to an agnostic value defined by a dimensionless universal scale and offset. The agnostic value is then sent to a data acquisition database where it is converted back to the original value. This is accomplished by first providing the data acquisition database with a sensor definition of a scale and offset used to convert the sensor values in addition to any sensor indicia and other parameters to display the data acquired at the data acquisition database. The wireless sensors database and user interface are also automatically updated when a new sensor type is attached to the network utilizing configuration data that resides in the new sensor that is sent to the database on its first connection.

    Autotune bolus antenna
    8.
    发明授权

    公开(公告)号:US11056774B2

    公开(公告)日:2021-07-06

    申请号:US16166114

    申请日:2018-10-21

    Abstract: A variable tuning transceiver sealed in a protective housing, such as a bolus, is adjusted to transmit a near optimally tuned signal at a select frequency while in vivo in an animal. More specifically, the variable tuning transceiver provides a plurality of incident power transmissions over an antenna at a plurality of corresponding different capacitance levels as defined by a variable tuning circuit in the transceiver. A detector circuit, also in the transceiver, detects reflected power for each of the incident power transmissions conditioned at each capacitance level which is affected by the dielectric constant in the animal and any mismatches in the antenna. Each reflected power can then be stored in nontransient memory in the transceiver whereby the microprocessor, also in the transceiver, can select the capacitance level with the lowest reflected power found and therefore the strongest external signal from the capacitance levels sampled. Once selected, transmissions which include data from sensors within and on the animal are transmitted externally to an external receiver.

    RFID scheme in harsh environments

    公开(公告)号:US10140482B2

    公开(公告)日:2018-11-27

    申请号:US15730534

    申请日:2017-10-11

    Abstract: A method for using an RFID tag to retain information of an environment, such as high temperature, that is beyond the operable limits of the RFID tag. The method generally comprises providing an RFID tag that has nonvolatile RFID memory that can communicate with an RFID interrogator system. Exposing the RFID tag to a first environment (such as a high temperature) that renders the RFID tag inoperable. Collecting a first sensor value of the first environment and storing the first sensor value in nonvolatile memory accessible by the RFID interrogation system. Later, exposing the RFID tag and the sensor to a second environment that renders the RFID tag operable (such as room temperature). Wirelessly transmitting the first sensor value to the RFID tag via the RFID interrogator system while the first sensor is in the second environment, and storing the first sensor value in the nonvolatile RFID memory while the RFID tag is in the second environment.

Patent Agency Ranking