Abstract:
An initiator circuit for a perforating gun includes a microprocessor structured to perform a circuit-startup algorithm comprising determining whether the circuit supply voltage is stable enough for operation and, if it is, or if a predetermined period of time has passed since powering up the circuit, sending a message indicating the circuit (and thus gun) is ready for operation. The sent message may be a communication uplink indicating an address of the circuit and its ready state or a short burst of pulses indicating the circuit's ready state.
Abstract:
A caliper-arm-position sensor comprising a differential variable reluctance transducer (DVRT) and circuits to drive the DVRT with a substantially sinusoidal signal and to sample a signal at the DVRT once per drive-signal cycle at a predetermined position in the drive-signal cycle is disclosed.
Abstract:
A full bore spectral gas holdup tool that measures gas holdup that is corrected for effects of the flowstream lamination and the salinity of the liquid in the a flowstream. The basic methodology utilizes spectral data from two gamma ray detectors at different spacings from a nuclear source that emits gamma radiation. 57Co is the preferred source and the gamma ray detectors are scintillation spectrometers. In addition to a full bore gas holdup measurement, the spectral gas holdup tool also provides indications of the degree of flowstream lamination and the salinity of the liquid in the flowstream. An iterative data processing method optimizes the accuracy of the measured flowstream parameters.
Abstract:
Methods and devices are provided for controlling detonation of explosives in a well bore for perforation or a well bore casing, which avoid or reduce unintentional or undesirable detonations while ensuring or increasing desirable detonations. An explosive trigger system or tool may comprise a central processing unit (CPU), memory, and one or more sensors disposed for measuring one or more downhole conditions. Downhole conditions may be measured with the sensor and then used to program detonation parameters (such as temperature or pressure) or preconditions (such as time or distance traveled) to the trigger system. Detonation can only occur when the programmed parameters or preconditions are satisfied. In this way, undesirable detonations are avoided by requiring certain preconditions to arming the trigger system. To further control arming and/or detonating, a line sequencer may be provided, wherein energy is propagate down along the physical deployment line as pulses or line “jerks” through mechanical manipulations of physical deployment line near surface. These pulses can form signals for downhole control of the trigger system.
Abstract:
A longitudinally segmented acoustic transducer for a cement bond logging (CBL) tool having a plurality of adjoining PZT ring-like segments driven synchronously in parallel by one or more pulses and caused to vibrate in an anti-resonant mode, substantially below the resonant frequency of an individual segment when used in a transmitting application. When used in a receiving application, each of the plurality of transducer rings are caused to vibrate by acoustic signals detected by the transducer array, also in an anti-resonant mode. High speed digital signal processing enables on-depth, high quality data for all azimuths at each depth to be obtained, processed, normalized and either sent to the surface in real time for each 20 Hz firing cycle, as the CBL tool is pulled toward the surface, or stored in a memory module in digital form for later retrieval. Built-in calibration factors used for normalizing the output signals to the operating conditions of use may be accessed at any time.
Abstract:
This invention pertains to a high density interconnection test connector intended especially for verification of integrated circuits, including a plate supporting a multiplicity of conductive pins one of the ends of which forms a contact zone with the electronic circuit to be tested and the other end forms a contact zone with a connecting plate that has a connection means with the test equipment, with the conductive pins presenting a form that is capable of ensuring flexibility and including a longitudinal component, characterized in that the pins present a succession of at least three arc-shaped sections (4, 5, 6) in alternating directions extended on both sides by rectilinear segments that are mobile according to one degree of freedom in axial translation, with the pins being inserted in the front plates.
Abstract:
A method and device are shown for detecting the characteristics of a cement annulus between a casing in a borehole and the surrounding earth formations in a slickline cement bond logging operation. An acoustic logging tool is utilized which produces a pure signal downhole. The received acoustically transmitted energy produces electrical signals indicative of both the amplitude of the received energy and variable density log data. Both the amplitude data and the variable density log data are captured in memory downhole by the use of a time amplitude matrix which stores a limited number of data points for producing a cement bond log at the well surface.
Abstract:
Various downhole logging tools and methods of using and making the same are disclosed. In one aspect a method evaluating cement bond quality in a well is provided. In a well with a particular casing/tubing configuration, waveforms of acoustic energy returning from the tubing and the casing with the tubing present are recorded. A frequency spectrum from the recorded waveforms is determined. Amplitudes of the returning acoustic energy at one or more preselected frequency(s) of interest of a range of frequencies at which the amplitudes are noticeably affected by cement bond quality for the particular casing/tubing configuration are determined. The determined amplitudes are compared with one or more baseline amplitudes to look for indications of cement bond quality. Other aspects involve time domain analysis.
Abstract:
Various downhole logging tools and methods of using and making the same are disclosed. In one aspect a method evaluating cement bond quality in a well is provided. In a well with a particular casing/tubing configuration, waveforms of acoustic energy returning from the tubing and the casing with the tubing present are recorded. A frequency spectrum from the recorded waveforms is determined. Amplitudes of the returning acoustic energy at one or more preselected frequency(s) of interest of a range of frequencies at which the amplitudes are noticeably affected by cement bond quality for the particular casing/tubing configuration are determined. The determined amplitudes are compared with one or more baseline amplitudes to look for indications of cement bond quality. Other aspects involve time domain analysis.