Abstract:
The invention includes fabrics that have been dyed or finished with a dye that contains a conductive mixture of conductive organic materials, inorganic materials, metals, metal oxides, carbon and carbon nanotubes or combinations or mixtures thereof. The dye is used to finish a fabric such that it is conductive. These fabrics are useful in shielding law enforcement personnel from energy weapons discharge and in providing an electrostatic medium for personnel that work with static sensitive products. The fabrics, when appropriately grounded, dissipate the emitted charge and transmit it to ground. Additionally, the apparel has high wear resistance and is both thermally and electrically conductive yet is comfortable to wear.
Abstract:
Undergarments that protect from the detrimental interaction of electrostatic fields with human tissue. Filaments woven or knitted into patterns or into an insert attached to the undergarments may comprise electrically nonconductive strands and electrically conductive strands. Electrostatic field-concentrators provided upon particular strands create ions from adjacent air molecules and cancel electrostatic charges in their vicinity. The geometry of the preferred filaments is such that the field-concentrators are salient from the central bulk of the filament by a distance at least as great as the axial radius of the field-concentrator terminal surface. As a result, potentially detrimental electrostatic fields are reduced, and concomitant health benefits to the wearer are realized.
Abstract:
The present invention provides protective goods, for example arctic clothing which allows long-time working even under the low temperature environment; said protective goods being characterized by excellent workability, heat-insulation and anti-static feature, without being hardened and embrittled, especially at the temperature of -10 degrees Celsius or below, further, under the environment of very low temperature such levels as -30 degrees Celsius or -60 degrees Celsius, furthermore even under the environment of extremely-low temperature on the level of -100 to -250 degrees Celsius. Protective goods made from a multiple-layer composite cloth, where the composite cloth comprises a surface fabric, an intermediate fibrous-insulator and a lining fabric, mainly composed of aramid fiber, respectively, wherein 1) the surface fabric and the lining fabric, comprises meta-aramid fiber by weight of 50 to 100 percent, para-aramid fiber by weight of 0 to 10 percent and other flame-retardant fiber by weight of 0 to 40 percent, with provision that the total weight-percent of meta-aramid fiber, para-aramid fiber and other flame-retardant fiber, is 100; 2) the intermediate fibrous-insulator comprises a multiple-laminated felt made from aramid fiber; and 3) electro-conductive yarns (a) are arranged along the lengthwise direction of the surface fabric at a density of 1 to 5 per inch and additional electro-conductive yarns and/or tapes (b) are arranged along the direction intersecting the lengthwise direction to form contact points with the electro-conductive yarns (a), whereby triboelectric charge on the outside surface of the protective goods is less than 0.6 micro-coulomb/m2.
Abstract:
A static dissipative garment configuration for persons employed in the manufacture and testing of sensitive electronic components. The garment is formed from a fabric which exhibits an electrical resistance of less than 10.sup.8 ohms per unit square and a decay time of no greater than 0.05 seconds. The garments also include tapered sleeves, steel snaps and are at least 3/4 length and include side slits extending from the bottom hem upwardly.
Abstract:
According to this procedure, these steps are made:a) immersing a shaped mold (4) in a dipping process in a liquid synthetic polyisoprene (IR) (synthetic latex), wherein the shaped mold (4) has previously been treated with coagulation agent (coagulants) or thermally treated,b) after the immersion, the synthetic polyisoprene layer is left on the shaped mold (4) and is freed from all salts with water,c) thereafter, the synthetic polyisoprene layer together with the shaped mold (4) is vulcanized in an oven,d) the synthetic polyisoprene layer is removed from the mold (4),e) the salts precipitated by the vulcanization on the synthetic polyisoprene molded body (11) are washed off with water and a chlorine-containing solution,f) the synthetic polyisoprene molded body (11) is halogenated to neutralize its pH and to increase its suppleness in contact with body skin with a halogenating solution,g) the synthetic polyisoprene molded body (11) is dried. The electro-protective gloves thus produced are much more comfortable to wear, provide better insulation, even with thinner wall thickness, and they are more durable.
Abstract:
An intimate blend of staple fibers, and a yarn, fabric, and article of clothing providing surprising arc performance and coloration capability, comprising a mixture of a first staple fiber made from a flame resistant polymer that retains at least 90 percent of its weight when heated to 425 degrees Celsius at a rate of 10 degrees per minute and comprises 0.5 to 20 weight percent discrete homogeneously dispersed carbon particles; and either (a) a second staple fiber from a flame resistant polymer being free of discrete carbon particles and having an L* lightness coordinate of 70 or greater and being capable of accepting a dye or coloration, or (b) a second staple fiber blend being free of discrete carbon particles and comprising at least one second staple fiber from a flame resistant polymer and having an L* lightness coordinate of 70 or greater and being capable of accepting a dye or coloration; the mixture having a total content of 0.5 to 3 weight percent discrete carbon particles.
Abstract:
A sewn product comprises fabrics having conductive yarns inserted each in a warp direction and a weft direction and disposed in a lattice at intervals, wherein at least two stitches in at least one place of seam are provided with a stitch interval of not more than 5 mm, and a surface resistance (R) between two points separated by 30 cm across at least one seam is according to the formula: R≦1.0×1012Ω. A sewn product comprises fabrics having conductive yarns inserted each in a warp direction and a weft direction and disposed in a lattice at intervals, wherein in at least one place of seam a number of piles of clothing fabrics of seam allowance is 5 or more, and a surface resistance (R) between two points separated by 30 cm across at least one seam is R≦1.0×1012Ω.
Abstract:
A fabric for protecting a wearer thereof from an energy weapon. The fabric is made of a plurality of coupled strands. Bach strand is made from at least two fibers, an electrically non-conductive fiber and an electrically conductive fiber. The electrically non-conductive fiber at least partially encloses the electrically conductive fiber.
Abstract:
A sewn product comprises fabrics having conductive yarns inserted each in a warp direction and a weft direction and disposed in a lattice at intervals, wherein at least two stitches in at least one place of seam are provided with a stitch interval of not more than 5 mm, and a surface resistance (R) between two points separated by 30 cm across at least one seam is according to the formula: R≦1.0×1012Ω. A sewn product comprises fabrics having conductive yarns inserted each in a warp direction and a weft direction and disposed in a lattice at intervals, wherein in at least one place of seam a number of piles of clothing fabrics of seam allowance is 5 or more, and a surface resistance (R) between two points separated by 30 cm across at least one seam is R≦1.0×1012Ω.