Abstract:
Provided are methods and compositions relating to a dental composition more specifically to prepare the damaged dentin of the tooth prior to repair. The dental compositions include a bioactive glass and a non-aqueous solvent comprising an alcohol, anti-inflammatory and anti-pain reliever.
Abstract:
A sampling device for sampling body fluid includes a lancet for making an incision, a capillary tube for drawing-up body fluid from the incision, and a test strip affixed to an upper end of the capillary tube for receiving the fluid. An absorbent pad can be disposed between the test strip and capillary tube for spreading-out the fluid being transferred to the test strip. An onsite analyzer such as an optical analyzer and/or an electrochemical analyzer can be mounted in the device for analyzing the fluid. Alternatively, a test strip can be slid through a slot formed in the bottom end of the device so that by passing the device against the skin after an incision has been formed, the test strip will directly contact body fluid emanating from the incision.
Abstract:
Method and apparatus for monitoring and reporting hand washing at a sanitizing station employs a sensor for signaling the dispensation of a sanitizing agent from a dispenser and setting a clear signal to permit passage through a portal, such as an entrance to a room. The module in turn includes an input element, an output element, a processor, and memory. The module operates in person and administrator modes. In the person mode, the module responds to an input signaling that a person has dispensed sufficient sanitizer to mitigate the spread of germs from care giver/health care worker to patient. The person activates the sanitizer to dispense the sanitizer liquid or foam and that action signals that the cleaning agent has been dispensed and turns on the entrance permitted light. If the dispenser is not activated or the amount of sanitizer dispensed is not adequate to sanitize the person's hands, a sensor positioned at the entrance of the door alarms. The apparatus may be installed quickly and easily, at lower cost, in a wide variety of sanitization stations, and can be used with existing, preinstalled sanitization dispensers or with a new dispenser. When in administrator mode, the module allows for passage of beds, equipment and supplies to the room.
Abstract:
A device for sampling body fluid includes a housing having a sleeve at a forward end thereof which is displaceable in response to being pressed against a user's skin to trigger the firing of a lancet. After the lancet is removed from the incision, the sleeve is repeatedly pressed against the skin to depress a ring of body tissue in surrounding relationship to the incision to express body fluid outwardly through the incision. A pusher member is then actuated to push a capillary tube through a front end of the housing for drawing-in body fluid. The lancet is a disposable lancet which includes a body supporting a skin-lancing member and the capillary tube. The disposable lancet passes through an upper end of a lancet carrier when being installed or removed. The device cannot be armed until the disposable lancet is installed in the housing, because the capillary tube functions to push a safety device to a non-safety position.
Abstract:
An energy harvester capable of providing motion from fluid flow, which comprises at least one Magnus cylinder driven to rotate by the movement of the fluid past a fin device. This causes the Magnus cylinder to rotate, and further interactions between the rotating Magnus cylinder and the moving fluid generate a Magnus lifting force. A channel or system may be also provided to direct the fluid flow to the Magnus cylinder. This rotating Magnus cylinder configuration is integrated into a mechanical device that is designed to transfer the Magnus lifting forces into a rotary mechanical motion to drive an electric generator. The device can be utilized in either air or hydraulic environments. A modification of the energy harvester can also be configured to utilize the generated electricity to produce hydrogen for use in fuel cells, or for combustion.
Abstract:
A device and method for lancing a patient, virtually simultaneously producing and collecting a small fluid sample from a body. The device comprises a blood collection system including a lancing needle (16), drive mechanism (11), kneading or vibration mechanism (25), optional suction system (7), and sample ejection mechanism. The device is preferably sized to be hand-held in one hand and operable with one hand. The device can optionally contain integral testing or analysis component (83) for receiving the sample and providing testing or analysis indication or readout for the user. A method involves piercing the skin at a rapid rate, kneading the surrounding area by ultrasonic action, piezoelectric or mechanical oscillation to stimulate the blood flow from the wound, drawing the fluid using a pumping system.
Abstract:
A device and method for lancing a patient, virtually simultaneously producing and collecting a small fluid sample from a body. The device comprises a blood collection system including a lancing needle (16), drive mechanism (11), kneading or vibration mechanism (25), optional suction system (7), and sample ejection mechanism. The device is preferably sized to be hand-held in one hand and operable with one hand. The device can optionally contain integral testing or analysis component (83) for receiving the sample and providing testing or analysis indication or readout for the user. A method involves piercing the skin at a rapid rate, kneading the surrounding area by ultrasonic action, piezoelectric or mechanical oscillation to stimulate the blood flow from the wound, drawing the fluid using a pumping system.
Abstract:
A process for producing lightweight materials for a battery comprises lightweight polymer substrate coated with dispersions of nano particles, conductive matrixes and active material.
Abstract:
A sensor system that detects a current representative of a compound in a liquid mixture features a multi or three electrode strip adapted for releasable attachment to signal readout circuitry. The strip comprises an elongated support which is preferably flat adapted for releasable attachment to the readout circuitry; a first conductor and a second and a third conductor each extend along the support and comprise means for connection to the circuitry. The circuit is formed with single-walled or multi walled nanotubes conductive traces and may be formed from multiple layers or dispersions containing, carbon nanotubes, carbon nanotubes/antimony tin oxide, carbon nanotubes/platinum, or carbon nanotubes/silver or carbon nanotubes/silver-chloride. An active electrode formed from a separate conductive carbon nanotubes layer or suitable dispersion, positioned to contact the liquid mixture and the first conductor, comprises a deposit of an enzyme capable of catalyzing a reaction involving the compound and preferably an electron mediator, capable of transferring electrons between the enzyme-catalyzed reaction and the first conductor. A reference electrode also formed from a conductive carbon nanotube layer or suitable dispersion is positioned to contact the mixture and the second conductor. The system includes circuitry adapted to provide an electrical signal representative of the current which is formed from printing conductive inks made with nano size particles such as conductive carbon or carbon/platinum or carbon/silver, or carbon nanotubes/antimony tin oxide to form a conductive carbon nanotube layers. The multiple-electrode strip is manufactured, by then applying the enzyme and preferably the mediator onto the electrode. Alternatively the electrode can have a carbon nanotubes/antimony tin oxide, carbon nanotubes/platinum, or carbon nanotubes/silver or carbon nanotubes/silver-chloride surface and or a conductive carbon or silver ink surface connecting leg. The carbon nanotube solution is first coated and patterned into electro shapes and the conductive carbon nanotubes, carbon or silver ink can be attached by printing the ink to interface with the carbon nanotube electro surface. A platinum electrode test strip is also disclosed that is formed from either nano platinum distributed in the carbon nanotube layer or by application or incorporation of platinum to the carbon nanotube conductive ink.
Abstract:
A method of providing blood glucose therapy for a critically ill patient includes calculating a baseline nutrition feed requirement based on an algorithm that incorporates at least one of age, gender, and body size of the patient: determining a first blood glucose level; determining a second blood glucose level after a preselected time interval: determining a first body temperature reading: comparing the blood glucose levels: and administering either nutrition or insulin. The amount of nutrition administered to the patient is based on a first change in blood glucose level, the current body temperature reading, and a predetermined feed algorithm based on the second blood glucose level as well as the baseline nutritional feed requirement. The amount of insulin administered is based on a second change in blood glucose level, body temperature, and a predetermined insulin algorithm that incorporates at least one of the patient's body frame size, age, and gender.