Abstract:
A compliant prosthetic foot is designed and fabricated by combining a compliant mechanism optimization technique with a calculation of low leg trajectory error under a reference loading condition. The compliant mechanism optimization technique includes a set of determinants for the compliant prosthetic foot. An optimized set of determinants of the compliant prosthetic foot is formed that minimizes the lower leg trajectory error relative to a target kinematic data set. The compliant prosthetic foot is then fabricated in conformance with the optimized set of determinants.
Abstract:
Prostheses include a terminal device, a back-lock mechanism, a wrist, a limb-socket, and a harness system. The terminal device can be a five-fingered mechanical hand that provides a releasable adaptive grasp, and has independently flexible fingers. The limb socket can be 3D printed using a molded model of a remnant limb. The harness strap can encircle an unaffected limb and is coupled to the terminal device with a cable so that a user can control the terminal device. The harness system can include a 3D printed harness ring that couples to the cable.
Abstract:
An additive manufacturing method and apparatus for interchangeable local interface support geometry and materials in lower limb prosthetic sockets. An interchangeable local interface prosthetic socket is configured to enable a user of the socket to configure variable support, pressure, and comfort characteristics of lower limb prosthetic sockets by selectively replacing an interface panel and/or distal cup with an alternative interface panel and/or distal cup being configured to have different physical characteristics.
Abstract:
A prosthetic limb and process to digitally construct a prosthetic limb which includes first, digitally producing a modified mold of a residual limb via 3d scanners and software known to the industry; constructing a test socket from the digitally modified mold and be equipped with an alignable system; for example, a pylon, along with the desired prosthetic foot; accurately scanning the test socket, preferably with a 3D scanner, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized prosthetic alignment; transferring the finalized digital alignment of the test socket to the finalized digitally modified mold; once the modified model has received the transferred alignment, fabricating the type of hookup in the socket; i.e., plug fit, four hole, support drop lock, or any other type of industry standard connection or accommodation via basic 3D software; and once the desired prosthetic attachment is finalized, the next step is to send the finished file to a 3-D printer to produce the definitive prosthetic device. The 3-D printed socket would then be placed in a vibratory finishing system to smooth out the interior and exterior surfaces of the printed socket; and the walls of the 3-D printed socket would be sealed by applying a mixture of epoxy sealant, for example, TC-1614, to the inside and outside walls of the socket, and placing the socket into an oven for a sufficient amount of time to seal the walls of the socket. Preferably, the prosthesis would be printed out of Nylon 12 material or of a strong plastic, such as ULTEM®, or carbon fiber, or other material of equivalent or greater strength that may be known or developed in the future.
Abstract:
Disclosed herein is a surgical guide tool for use in total hip replacement surgery. The surgical guide tool may include a customized mating region and a resection guide. The customized mating region and the resection guide are referenced to each other such that, when the customized mating region matingly engages a surface area of a proximal femur, the resection guide will be aligned to guide a resectioning of the proximal femur along a preoperatively planned resection plane.
Abstract:
The disclosure provides apparatus and methods of use pertaining to a prosthetic finger assembly. In one embodiment, the assembly includes a coupling tip and a distal ring coupled with the coupling tip. The assembly further includes a proximal ring coupled with the distal ring. A rocker formed in an H-shape with a first end forming a first split prong and a second end forming a second split prong may extend between the coupling tip and the proximal ring. The coupling tip, distal ring, proximal ring, and H-shaped rocker may all be hingedly connected such that movements of the residual finger within the proximal ring articulate the distal ring together with the rocker to articulate the coupling tip. Other embodiments are also disclosed.
Abstract:
Disclosed herein is a surgical guide tool for use in total hip replacement surgery. The surgical guide tool may include a customized mating region and a resection guide. The customized mating region and the resection guide are referenced to each other such that, when the customized mating region matingly engages a surface area of a proximal femur, the resection guide will be aligned to guide a resectioning of the proximal femur along a preoperatively planned resection plane.
Abstract:
A system for sizing and fitting an individual for apparel, accessories, or prosthetics includes at least one energy emitter configured to emit energy onto a field-of-view that contains an individual, and at least one energy sensor configured to capture reflected energy from within the field-of-view. A spatial measurement module calculates spatial measurements of a surface portion of the body of the individual when the individual is either stationary or moving about in real-time, based on data from the energy sensor.
Abstract:
The present invention relates to standardizing the manufacture above-the-knee (AK) and below-the-knee (BK) prosthetic sockets and attached hardware using specially designs alignment jigs that can record position of components, with micro-encoders embedded in the jig, to quantify various degrees of freedom (rotations and translations) during integration of a temporary check socket or prosthesis. These records, together with a digital record of the shape of the truncated limb, in the form of a CAD file, can provide a complete digital record or “prescription” of the prosthesis. The digital record is then transferable to a central fabrication facility which uses a jig augmented with motors, drives systems, and encoders to robotically position and align fixtures and clamps to streamline integration and production of the prosthesis in a standardized manner.
Abstract:
Systems, methods, and software are provided for modifying a prosthetic socket to better fit a residual limb of a patient. The embodiments disclosed herein may align and compare a first shape corresponding to an interior surface of the prosthetic socket or a residual limb shape to a second shape corresponding to a desired socket shape or a rectified residual limb shape. A socket insert or pad may be manufactured per the comparison. The socket insert or pad may be configured to be affixable within the patient's prosthetic socket to modify the interior surface of the prosthetic socket such that the modified prosthetic socket provides a better fit to the residual limb of the patient.