Abstract:
The present invention relates to a one-touch chamfering-amount adjustment device for a chamfering machine which specifically carries out a chamfering process on the welding bead surfaces of objects to be processed (such as metal sheet materials and pipes). In the present invention, the moment after a chamfering-amount-adjustment piece has been manipulated so as to rotate, a position-setting pin is inserted into a securing recess in the chamfering-amount-adjustment piece and as this happens the chamfering amount is precisely adjusted in units and at the same time locking to the predetermined chamfering amount is automatically maintained, yet nevertheless the adjustment of the chamfering amount is achieved in a straightforward fashion with one touch, and, when the chamfering-amount-adjustment piece is manipulated, a cutter shaft moves vertically and as it does so the chamfering amount is adjusted in such a way that the chamfering amount can be immediately and rapidly adjusted even during working regardless of any cutter rotating action.
Abstract:
The present invention relates to a chamfer device for machining a weld bead surface, which specifically carries out a chamfering process on the welding bead surfaces of objects to be processed (such as metal sheet materials and pipes). In the present invention, immediately after a chamfering-amount-adjustment unit has been rotated and released, a position-setting pin is inserted into a securing recess in the chamfering-amount-adjustment unit, while the chamfering amount is adjusted in precise units and simultaneously locked at a predetermined chamfering amount which is automatically maintained, and the adjustment of the chamfering amount is achieved in a straightforward fashion with just one touch. When the chamfering-amount-adjustment unit is operated, a mobile cutter shaft moves vertically and as it does so the chamfering amount is adjusted in such a way that the chamfering amount can be immediately and rapidly adjusted while continuously operating without regard to any cutter rotation action.
Abstract:
A tool-holder for a milling machine is composed of a first rotating portion with a coupler attachable to a spindle drive shaft of the machine, a second rotating portion turning as one with the first portion and equipped with a chuck to hold a tool, and a mechanism designed to detect undulations on a surface being milled. The second rotating portion is capable of axial movement relative to the first rotating portion, so that when the tool-holder is traversed along a prescribed trajectory referable to a nominal surface, the undulations on the actual surface of the panel and the extent of their deviation from the nominal surface can be sensed and quantified through the agency of detection mechanism, and a corresponding axial movement induced in the second portion of the tool-holder to compensate the variation and maintain a constant milling depth, thereby improving the quality of finish-milling operations on technological materials such as panels of carbon fiber composite.
Abstract:
A plunge base router for use in an upright and an inverted position is disclosed. The router includes a depth adjustment mechanism, a depth stop mechanism, a post lock mechanism, and a return spring defeat mechanism. The depth adjustment mechanism includes a coarse adjustment mechanism and a fine adjustment mechanism to set the cutting distance of a bit. The course and fine adjustment mechanisms are usable in both the upright and inverted positions and the fine adjustment mechanism is operable without being reset throughout the full range of motion of the plunge router. The depth stop includes a mechanism for locking the end of a rod on the housing to the base in order to set the relative position in between the housing and the base. The depth stop also includes a plurality of steps for engaging the rod and permitting incremental passes of cutting at different depths with the router. The post lock mechanism includes a lever for locking the housing to the guide posts in a relative position relative to the base, and the lever is normally biased to the lock position. The lever includes a latch for locking the lever in the open positions so that the plunger can be easily mounted in an inverted position under a worktable without the need to hold down the lever in order to permit relative movement between the housing and the base. The return spring defeat mechanism defeats the return spring that biases the housing away from the base so that it is easier to mount the plunge router in an inverted position on the underside of a worktable.
Abstract:
A method and apparatus for the refurbishment and repowering of wind turbines through the extension of existing installed blades so that they can catch more wind energy and therefore enable an increase in the overall average power output of the wind turbine.
Abstract:
A power tool including a housing and a motor assembly arranged to rotate a cutting tool. The motor is mounted in the housing. At least one guide post is slidably mounted to the housing. The power tool includes a base fixed to the guide post. A depth adjustment mechanism is arranged to adjust the distance the cutting tool projects through the base. The depth adjustment mechanism has a depth rod adjustably mounted to the housing and arranged to engage the base when the housing is plunged towards the base. The depth adjustment mechanism also has a depth adjustment knob mechanically coupled to the depth rod and moving the depth rod with respect to the housing. The depth adjustment mechanism further has a locking knob for selectively locking the depth rod. One of the depth adjustment knob and the locking knob at least partially is nested within the other.
Abstract:
The present invention relates to a one-touch chamfering-amount adjustment device for a chamfering machine which specifically carries out a chamfering process on the welding bead surfaces of objects to be processed (such as metal sheet materials and pipes). In the present invention, the moment after a chamfering-amount-adjustment piece has been manipulated so as to rotate, a position-setting pin is inserted into a securing recess in the chamfering-amount-adjustment piece and as this happens the chamfering amount is precisely adjusted in units and at the same time locking to the predetermined chamfering amount is automatically maintained, yet nevertheless the adjustment of the chamfering amount is achieved in a straightforward fashion with one touch, and, when the chamfering-amount-adjustment piece is manipulated, a cutter shaft moves vertically and as it does so the chamfering amount is adjusted in such a way that the chamfering amount can be immediately and rapidly adjusted even during working regardless of any cutter rotating action.
Abstract:
A plunge base router for use in an upright and an inverted position is disclosed. The router includes a depth adjustment mechanism, a depth stop mechanism, a post lock mechanism, and a return spring defeat mechanism. The depth adjustment mechanism includes a course adjustment mechanism and a fine adjustment mechanism to set the cutting distance of a bit. The course and fine adjustment mechanisms are usable in both the upright and inverted positions and the fine adjustment mechanism is operable without being reset throughout the full range of motion of the plunge router. The depth stop includes a mechanism for locking the end of a rod on the housing to the base in order to set the relative position in between the housing and the base. The depth stop also includes a plurality of steps for engaging the rod and permitting incremental passes of cutting at different depths with the router. The post lock mechanism includes a lever for locking the housing to the guide posts in a relative position relative to the base, and the lever is normally biased to the lock position. The lever includes a latch for locking the lever in the open positions so that the plunger can be easily mounted in an inverted position under a worktable without the need to hold down the lever in order to permit relative movement between the housing and the base. The return spring defeat mechanism defeats the return spring that biases the housing away from the base so that it is easier to mount the plunge router in an inverted position on the underside of a worktable.
Abstract:
An inline weld-bead cutting apparatus for a spiral pipe for cutting a weld-bead protruding from a butt-jointed portion of the present invention includes: a main frame; an up down movement plate; a mina up down driving part; a forward-backward movement plate; a forward-backward driving part; and a cutting part provided in the forward-backward movement plate, and cutting a weld-bead protruding on an outer surface of a pipe transferred from the pipe transfer line, and the cutting part includes a mounting plate provided in the forward-backward movement plate to be movable up and down, a rotation motor provided in the mounting plate, a spindle provided in the mounting plate to be rotatable through a bearing, and receiving a rotational force of the rotation motor and having an up down-direction shaft, and a cutting tool mounted on a terminal of the spindle, and including an insert for cutting the weld-bead.
Abstract:
A router includes a housing and a motor assembly disposed within the housing. The motor assembly includes a driven shaft having a cavity on a first end of the driven shaft. The router includes a collet that is configured to mate into the cavity of the driven shaft with the collet being configured to grip a shank of a router bit. The router includes a gear mechanism that is configured to couple and decouple from a second end of the driven shaft such that a rotation of the gear mechanism when the gear mechanism is coupled to the second end of the driven shaft causes at least one of tightening and loosening of the collet.