Abstract:
A steel machine component, such as a bearing race, has a critical surface of generally circular configuration. Here the steel of the machine component exists in a state of compression to improve the physical characteristics of the surface. To this end, high speed steel is melted along the full circumference of the surface. Upon cooling to room temperature some of the austenite in the steel transforms into martensite. Tempering converts much of the remaining austenite into martensite, so that the machine component at the surface is almost entirely martensite. Martensite normally occupies a greater volume than austenite, but since the layer of martensite so formed is confined by the underlying core of the machine component, the layer exists in a state of compression. The high speed steel is melted with a laser beam that makes a trace over the full surface of the machine component. Where the underlying core is formed from high speed steel, the steel that is melted derives from the core itself, thus producing a glaze over the core. Where the underlying core is another type of steel, the high speed steel which is melted is supplied from an external source as a filler metal and becomes a cladding that lies over, yet is bonded to, the core.
Abstract:
A method of producing a metallic exhaust gas catalyst carrier body includes winding alternating layers of smooth and corrugated sheetmetal strips to form a blank and inserting the blank into a jacket tube, each winding of the blank being formed of a respective smooth and corrugated sheetmetal strip each having an individually predeterminable length; determining the length of each winding in accordance with the length necessary for filling a predetermined jacket tube cross section, fixing each winding beforehand to at least one side of the blank, so as to produce an approximately egg-shaped blank which is tightly wound on the one side and wound with varying looseness in the remaining region thereof; inserting the blank into the jacket tube in such a manner that the tightly wound side is located in a region of the jacket tube cross section in which a largest possible inscribed circle of the jacket tube cross section engages the jacket tube, and a device for carrying out the method, a carrier body formed by the method and device, and a blank forming part of the carrier body.
Abstract:
A selective laser sintering apparatus and method is disclosed, in which the laser power is controlled according to the scan velocity. The scanning system, which includes a pair of galvanometer-controlled mirrors for directing the aim of the laser beam, generates signals indicative of either the position or scan velocity of the aim of the beam, in either one or two directions. The signals are gated in the laser power control system so as to pass the signals only during those times at which the laser is to be turned on. A laser power control system receives the signals and, in the case of position signals, differentiates the signals to generate velocity signals. The velocity signals are used to derive a scan velocity, and the scan velocity is multiplied by the desired laser power at full scan velocity to produce a laser power control signal. By making the laser power dependent upon the scan velocity, a constant laser energy flux density is applied to powder at the target surface, even during acceleration and deceleration intervals at the beginning and end of a scan, respectively.
Abstract:
A method of producing a metallic exhaust gas catalyst carrier body includes winding alternating layer of smooth and corrugated sheetmetal strips to form a blank and inserting the blank into a jacket tube, each winding of the blank being formed of a respective smooth and corrugated sheetmetal strip each having an individually predeterminable length; determining the length of each winding in accordance with the length necessary for filling a predetermined jacket tube cross section, fixing each winding beforehand to at least one side of the blank, so as to produce an approximately egg-shaped blank which is tightly wound on the one side and wound with varying looseness in the remaining region thereof; inserting the blank into the jacket tube in such a manner that the tightly wound side is located in a region of the jacket tube cross section in which a largest possible inscribed circle of the jacket tube cross section engages the jacket tube, and a device for carrying out the method, a carrier body formed by the method and device, and a blank forming part of the carrier body.