Abstract:
An extrusion device (1) for manufacturing a product based on a rubber mix, which comprises a rotary roller (5), an inlet orifice (15) for the rubber mix and a vault (6) partially circumferentially covering the external surface (51) of the roller (5), the rubber mix being driven from the inlet orifice (15) into the air gap situated between the vault (6) and the roller (5) towards an extrusion orifice (21) defining the profile of the product. The extrusion orifice is delimited by a wall (20) which cooperates with the external surface (51) of the roller (5), and the vault (6) carries on its internal surface oriented towards the roller projecting threads in order to delimit with the surface (51) of the roller a chamber for plasticization of the mix, at least two of the threads extending substantially axially of the roller.
Abstract:
An extruder feeds a thermoplastified flow of synthetic resin to at least one mixing unit which is driven independently of the extruder and has a rotor and stator with mutually facing pockets and defining a gap between them traversed by the thermoplastified flow and into which an additive is pumped at an upstream end so as to obtain an especially homogenius distribution of the additive in the thermoplastified flow.
Abstract:
A method of mixing a pumpable additive with a thermoplastified flow utilizes a pocketed rotor and stator structure integrated in a worm or screw plastifier and to which the additive is fed by a metering pump at the upstream end of the gap between the rotor and stator surfaces.
Abstract:
A cavity transfer mixing extruder which includes an extrusion unit and a mixing unit, which are united coaxially. The extrusion unit includes a barrel provided with a feed opening through which materials are fed into the barrel, and a screw shaft coaxially and rotatably extended through the barrel. The mixing unit includes a housing, a stator fixedly fitted in the housing and a first cavity group including circumferential cavity rows of cavities in the inner circumference thereof, and rotor joined coaxially to the front end of the screw shaft, coaxially rotatably extended through the stator, and provided with a second cavity group including circumferential cavity rows of cavities in the outer circumference thereof. The respective cavities of the first and second cavity groups, when developed on a plane, each has a parallelogrammic shape defined by a pair of opposite, parallel straight walls extending perpendicularly to the axial direction, and a pair of opposite, parallel straight walls inclined at an angle to the axial direction. The longitudinal axes of the cavities of the first cavity group, and the longitudinal axes of the cavities of the second cavity group are inclined in opposite directions, respectively, with respect to the axial direction so that the materials filling the cavities are forced forward as the rotor is rotated relative to the stator.
Abstract:
An apparatus for the mixing of materials such as synthetic polymers and their additives. The apparatus comprises a casing which surrounds a cylindrical rotor. A series of groove rings are axially arranged in succession in the casing and have end surfaces placing the rings in abutting axial engagement with one another. These end surfaces of each groove ring may be integral therewith or may be provided by separate spacer rings. The grooves formed on the peripheral working surfaces of the groove rings are circumferentially separated by shearing lands and are limited in an axial direction by said end surfaces, said shearing lands and end surfaces defining said grooves as a series of individual closed chambers. In assembly, the grooves formed in the casing groove rings are arranged in a partially overlapping, axially displaced relationship with respect to corresponding radially opposed grooves formed in the rotor in a manner such that the material to be mixed will flow between said overlapping casing and rotor closed groove chambers thereby causing repeated dispersal of the material as it moves through the mixing apparatus.
Abstract:
An apparatus for the mixing of materials such as synthetic polymers and their additives. The apparatus comprises a casing which surrounds a cylindrical rotor. A series of groove rings and spacer rings are axially arranged on the rotor and in the casing. The grooves formed on the peripheral surface of the groove rings are circumferentially separated by shearing lands and are bound along their longitudinal side faces by the side faces of the alternately arranged spacer rings. In assembly, the grooves formed in the rotor groove rings are arranged in a partially overlapping, axially displaced relationship with respect to the radially opposed grooves formed on casing groove rings.
Abstract:
Process for reducing thermally induced discoloration of melt-processible fluoropolymer resin produced by polymerizing fluoromonomer in an aqueous medium to form aqueous fluoropolymer dispersion and isolating said fluoropolymer from said aqueous medium to obtain said fluoropolymer resin. The process comprises melt extruding said fluoropolymer resin to produce molten fluoropolymer resin; and exposing said molten fluoropolymer resin to an oxygen source during said melt extruding.
Abstract:
Process for reducing thermally induced discoloration of fluoropolymer resin produced by polymerizing fluoromonomer in an aqueous dispersion medium to form aqueous fluoropolymer dispersion and isolating said fluoropolymer from the aqueous medium by separating fluoropolymer resin in wet form from the aqueous medium and drying to produce fluoropolymer resin in dry form. The process comprises: pretreating the aqueous fluoropolymer dispersion and/or the fluoropolymer resin in wet or dry form; and exposing the fluoropolymer resin in dry form to fluorine.
Abstract:
The invention relates to a method and an apparatus for manufacturing an extruded plastic product, the apparatus comprising at least one rotor (1) and at least one stator (2, 3) 4 with a feed gap (4) provided between them, a groove (7) being situated on the other side of the feed gap (4), the groove pressing the material to be extruded out of the apparatus when the rotor (1) is rotated. The cross section of the groove (7) remains substantially unchanged. At the opposite side of the feed gap (4) there is positioned a countergroove (8) in such a way that a processing cavity consisting of the grooves (7), the countergrooves (8) and the clearance between 6 them decreases at least partially continuously along 5 the axis of the extruder. The deformation energy of the material can thus be kept as small as possible due to the unchanging cross section of the groove (7), and the material stays in the groove (7) due to the placement of the flights (7a, 8a). The material is made to move rotatably, which enables the manufacture of a laminar plastic product (11). Further, materials that would otherwise be difficult to process can also be extruded effectively.