Abstract:
A charging member includes a conductive support, and a conductive elastic layer that is provided on an outer peripheral surface of the conductive support and includes a rubber material and inorganic particles, and in which an average dispersion degree of aggregates of the inorganic particles is 95% or greater and a maximum particle diameter of the aggregates of the inorganic particles is 200 μm or less.
Abstract:
The present invention provides kneading/extruding equipment capable of stable operation by keeping the pressure of kneaded material before a first-stage gear pump in steady operation (molding) and preventing fluctuation of the pressure of kneaded material before the first-stage gear pump constant from largely affecting the pressure of kneaded material before a latter-stage gear pump at start-up or upon change of production rate, and thus capable of responding to an increase in production rate while securing a high-quality molded product, and an operation control method thereof. The kneading/extruding equipment comprises: a rotational speed feedback control unit for a first gear pump, which feedback-controls the rotational speed of the first gear pump, and a rotational speed feedforward control unit for a second gear pump, which feedforward-controls the rotational speed of the second gear pump.
Abstract:
The invention relates to a screen carrier element (100) for a filtration device comprising at least one screen cavity (101) for arranging at least one filter unit (10) therein, a support tube (15) having cut-outs (15.4) and a plurality of disk filter elements (11), each having a central hub (11.3) with which they are mounted on the support tube (15). A semi-permeable filter medium (11.1) surrounds the hub and is spread out to form a three-dimensional structure. At least one flow channel (11.4) extends in the hub element (11.5) from the main body enveloped by the filter medium (11.1) to the support tube (15), wherein the support tube (15) leads into an outlet channel (102) of the screen carrier element (100). The support tube (15) comprises a bearing section (15.1, 15.2) protruding from beneath the disk filter elements, and said bearing section can be inserted into the outlet channel (102) from the screen cavity (101). The outlet channel (102) is designed as a tapered bore over at least a part of the length thereof, which opens toward the screen cavity (101). At the same time, the bearing section of the support tube (15) has at least one tapered section (15.2) which engages with the tapered bore.
Abstract:
A valve has a housing formed with a central chamber centered on and extending along a main axis, an inlet passage and an outlet passage having mouths in the chamber spaced angularly from and confronting each other, and a secondary passage offset from the inlet and outlet passages and centered on an axis offset from a center of one of the mouths by more than 90°. A valve pin fitted in the chamber is formed with a secantally throughgoing flow passage centered on a flow-passage axis generally parallel to but offset from a diameter of the pin. A filter is provided in the flow passage, the secondary passage being sufficiently large that, when the pin is pivoted to align the flow passage with the secondary passage, the filter can be removed from the flow passage through the secondary passage.
Abstract:
The invention relates to a device for the extrusion of thermoplastic synthetic material featuring an extruder screw (2) which is mounted on a housing (1) including a plasticizing section (P) at the inlet side, a degassing section which is mounted upstream on a discharge section (A) and a conveying outlet (3) operating in the opposite direction which is located between the plasticizing section (P) and the degassing section (E). A flow channel (5) that contains a melt filter (4) is bridged over by at least one of the conveying outlets (3) in the opposite direction. To create favorable production conditions, the extruder screw (2) forms a similar conveying outlet (7) operating in the same direction between the conveying outlet (3) in the opposite direction and the downstream port (6) of the flow channel (5). The housing (1) has at least one degassing vent (8) at the transition area of the conveying outlet (3) operating in the opposite direction and the conveying outlet (7) operating in the same direction.
Abstract:
The invention relates to an apparatus for the continuous filtering of impurities from a flowable compound, especially a plastic melt, comprising a filter insert (3) in the form of a hollow rotary body which is held to rotate about its rotational axis (A) relative to a housing (1, 2) and is flowed through by the flowable compound and which is arranged in a flow conduit of the housing (1, 2) between a feed conduit (7) for the compound to be filtered and a discharge conduit (8) for the filtered compound, and a discharge apparatus for impurities held back by the filter, which apparatus comprises a feed screw (9) cooperating with the filter insert (3). In order to provide advantageous constructional conditions it is proposed that the filter insert (3) comprises a disk-like filter (5) which is arranged on the face side of the rotary body and is coaxial to the rotational axis (A).
Abstract:
A control system for continuous rubber molding apparatus comprising; a feed portion for feeding a rubber material previously removed of foreign substances or particles in the previous step; an extruder for kneading the fed rubber material and feeding forward the kneaded material; and a gear pump for delivering the rubber material, fed from the extruder, to a forming nozzle, the forming nozzle continuously extruding a rubber ribbon used for building a tire. The control system comprises: a pressure sensor for sensing a pressure in the gear pump; pressure comparator for comparing a sensed pressure and a set value; and motor controller for controlling the number of revolutions of a motor based on a comparison result given by the pressure comparator, the motor operative to drive a screw of the extruder.
Abstract:
The present invention concerns a process for producting cables, in particular cables for the distribution of electrical energy or cables for telecommunications, more particularly, cables having at least one covering layer comprising a composition of high viscosity. More particularly, the present invention concerns cables having at least one covering layer comprising a polymeric composition comprising a mineral filler capable of imparting one or more specific properties to the aforesaid cables. In accordance with the present invention, said production process comprises the stages of: conveying at least one conducting element inside of an extruder; feeding the polymeric material, optionally premixed with other components of said composition, into said extruder, filtering the material transferred and plasticized by the screw of said extruder; depositing said material onto said at least one conducting element, the filtration operation being performed with a filtration efficiency greater than 0.8, preferably greater than 0.9. The present invention concerns, in addition, an apparatus for the purpose of performing the production process mentioned above.
Abstract:
An extrusion molding apparatus comprises a shaping die for producing a ceramic molded product, and a screw extruder having built therein an extruding screw (40) for mixing while leading a ceramic material forward. The extruding screw (40) includes a pressing screw portion (410) having a first lead (411) and a dispersing screw portion (420) having a second lead (421) adjacent to a forward end (412) of the pressing screw portion (410). The second lead (421) is formed in such a manner that the rear ends of all the second lead surfaces (426) at the rear end (422) of the dispersing screw portion (420) and the forward end of the first lead surface (416) at the forward end (412) of the pressing screw portion (410) are displaced from each other.
Abstract:
An intraluminal catheter having at least a section of the catheter shaft being relatively transparent, and the method of manufacture thereof. In a presently preferred embodiment, the intraluminal catheter is a balloon catheter having a transparent shaft section formed of a polyetheretherketone polymeric material. The substantially transparent shaft section, of the catheter, is amorphous, and is substantially free of water marks and gels that would limit the transparency.