摘要:
A method and an arrangement for operating a storage and retrieval unit (3) are specified. A rail line (1) respectively a power supply rail (6) for the storage and retrieval unit (3) is set to a risk mode voltage, the rectified value/effective value of which lies below a minimum rectified value/minimum effective value necessary to move the storage and retrieval unit (3) but above zero, if a risk posed by the storage and retrieval unit (3) is detected. Alternatively or in addition, the voltage applied to the rail line (1)/power supply rail (6) can also be investigated in the storage and retrieval unit (3) for modulated change signals. The applied voltage is passed on to a traction motor (5) of the storage and retrieval unit (3) only when it has been established that the normal operation-traction voltage and not the risk mode voltage has been applied to the rail line (1)/power supply rail (6).
摘要:
According to one embodiment, four VVVF main circuit inverters for supplying electric power to drive a permanent-magnet synchronous motor are packaged into one unit. The four VVVF main circuit inverters are configured as a 4-in-1 inverter unit which shares a cooling mechanism for radiating heat generated due to power supply operation for the permanent-magnet synchronous motors to outside. A 2-in-1 semiconductor device package in which two semiconductor elements to convert electric power are packaged into one unit to be able to drive a permanent-magnet synchronous motor is contained in the 4-in-1 inverter unit. Thereby, individual control of inverters and reducing the size of the entire apparatus can be achieved for the electric-vehicle control apparatus.
摘要:
A power conversion device includes: an inverter that drives an alternating-current motor by converting a direct-current voltage into an alternating-current voltage of an arbitrary frequency; an alternating current disconnecting switching unit connected between the inverter and the alternating-current motor; a current detector that detects an output current of the inverter; and a controller that performs on/off-control of the plural switching elements in the inverter and switching control with respect to the switching unit, based on at least a current detected by the current detector. The controller has a configuration to be able to interrupt a fault current by setting the fault current to a state of generating a current zero point, when the fault current containing a direct-current component is generated between the inverter and the alternating-current motor.
摘要:
According to one embodiment, there is provided an electric-vehicle driving apparatus which consumes regenerative energy by a brake resistor and can decrease harmonic components generated by a brake-chopper switching circuit. Plural brake-chopper switching circuits are provided in parallel for each inverter. Harmonic components generated by the brake-chopper switching circuits are decreased by changing phases or frequencies of triangular carrier waves of the switching circuits, relatively to each other.
摘要:
An electrical energy capture system, as may be carried on a hybrid energy, electro-motive, self-powered traction vehicle, is provided. The system may be used for storing electrical power generated on the vehicle and for discharging the stored electrical power for use on the vehicle. The system includes circuitry connected to a plurality of electrical energy storage devices connected in parallel circuit to one another. The circuitry may be configured to establish a respective circuit path for charging and discharging electrical energy from each energy storage device with respect to a DC bus. The circuitry is further configured to block a flow of electrical current from any one of the storage devices to any of the other storage devices, thereby avoiding flow of currents that could otherwise circulate among the electrical energy storage devices due to electrical imbalances that may occur in one or more of the electrical energy storage devices.
摘要:
An energy management system for use with a hybrid energy off highway vehicle. The off highway vehicle includes a primary energy source and a power converter driven by the primary energy source for providing primary electric power. A traction bus is coupled to the power converter and carries the primary electric power. A traction drive is connected to the traction bus. The traction drive has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the off highway vehicle. The traction drive has a dynamic braking mode of operation wherein said traction drive generates dynamic braking electrical energy. The energy management system includes an energy management processor for determining a power storage parameter and a power transfer parameter. An energy storage system is connected to the traction bus and is responsive to the energy management processor. The energy storage system selectively stores electrical energy as a function of the power storage parameter and selectively supplying secondary electric power from the stored electrical energy to the traction bus as a function of the power transfer parameter.
摘要:
The present invention is directed to a control strategy for operating a plurality of prime power sources during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations. The present invention is directed at a general control strategy for multi power plant systems where the power systems need not be of the same type or power rating and may even use different fuels. The invention is based on a common DC bus electrical architecture so that prime power sources need not be synchronized.
摘要:
The present invention is directed to a control strategy for operating a plurality of prune power sources (101-1 to 101-3) during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations The present invention is directed at a general control strategy for a multi-engine systems (101-1, 101-2) where the power systems need not be of the same type or power rating and may even use different fuels The invention is based on a common DC bus (103) electrical architecture so that prime power sources need not be synchronized
摘要:
A railroad vehicle (1500) for carrying freight is described. The railroad vehicle (1500) comprises power regeneration capability through a traction motor (1530) linked to a driving wheel (1520D), an electrical energy storage system (1550), a controller (1570) that may selectively operate the traction motor (1530) in a motoring mode, a coasting mode, or a dynamic braking mode. In the dynamic braking mode electrical energy from the traction motor (1530) is transmitted to the electrical energy storage system (1550). The controller (1570) is in communication with a communication link (1580) that receives control commands from an external control source (1595), and those control commands indicate the operating mode for a particular period of time.
摘要:
An energy management system for use with off-highway vehicles, including locomotives, that traverse a known course. A processor determines power storage and transfer parameters, including data indicative of present and future track profile information. The energy management system controls the storage and regeneration of electrical energy. A hybrid energy locomotive system has an energy storage and regeneration system. In one form, the system can be retrofitted into existing locomotives or installed as original equipment. The energy storage and regeneration system captures dynamic braking energy, excess motor energy, and or externally supplied energy. The captured energy is stored in an energy storage system such as a battery, a flywheel system, or a capacitor system. The energy storage and regeneration system can be located in a separate energy tender vehicle. The separate energy tender vehicle is optionally equipped with traction motors.