Abstract:
This invention presents microstructures enhanced with nanopillars. The invention also provides a novel way for manufacturing nanopillar-enhanced microstructures, using conventional microfabrication techniques. In some embodiments, the invention also provides methods of use for the nanopillar-enhanced microstructures.
Abstract:
A method and apparatus for growing nanostructures is presented. A growth substrate including at least one reaction site is provided as is a device disposed proximate the growth substrate. Energy is provided to the reaction site and a reaction species is introduced to the growth substrate. This results in a nanostructure growing from the reaction site wherein the growth process of the nanostructure is controlled by providing a force to the device.
Abstract:
A method of forming a high aspect ratio adhesive structure, the method comprising fabricating a porous template comprising at least a first tier and a second tier; introducing a softened polymer into the template; and separating the polymer from the template.
Abstract:
A method of manufacturing nano-loops is disclosed in which branched nanostructures are formed in a template. A branched nanostructure comprises a stem and at least two branches, each branch emanating from the stem at a branch point. A first part of the template is removed to expose the nanostructure stems and stem ends of the nanostructure branches. The exposed stem ends of the nanostructure branches form the nano-loops. Optionally, the free ends of the branches may be exposed and embedded in a layer of supporting material.
Abstract:
A method and apparatus for growing nanostructures is presented. A growth substrate including at least one reaction site is provided as is a device disposed proximate the growth substrate. Energy is provided to the reaction site and a reaction species is introduced to the growth substrate. This results in a nanostructure growing from the reaction site wherein the growth process of the nanostructure is controlled by providing a force to the device.
Abstract:
A construction method for 3D micro/nanostructure, comprising: Step (1), fixing and vacuuming a material source on a substrate; Step (2), focusing an electron beam to ensure that a position of a focus is 0-100 nm away from a surface of material source, and an interface local domain including the focus of electron beam and surface atoms is formed; and Step (3), controlling the focus of electron beam to move point by point according to a shape of a designed 3D micro/nanostructure, and realizing the construction of 3D micro/nanostructure. This disclosure realizes real-time construction of 3D micro/nanostructure through the migration of atoms driven by uneven atomic density and electric potential difference in interface local domain. This disclosure promotes integrative development of nanotechnology and 3D printing and has good value of application and promotion.
Abstract:
A method of forming a high aspect ratio adhesive structure, the method comprising fabricating a porous template comprising at least a first tier and a second tier; introducing a softened polymer into the template; and separating the polymer from the template.
Abstract:
The invention relates to a method of forming at least one nano-structure with a reusable template structure having a channel. The method includes introducing at least one reagent into the channel, and reacting the at least one reagent to form a nano-structure within the channel. The nano-structure forming channel may be positioned in alignment with one or more electrode structures, which may be positioned within or upon the substrate, may be embedded in the reusable template structure, and/or may be external electrode structures positioned outside of the reusable template structure and independent of the substrate. In addition, the electrode structures may be a source material for the formation of the nano-structure in the channel.
Abstract:
Nanoelements such as single walled carbon nanotubes are assembled in three dimensions into a nanoscale template on a substrate by means of electrophoresis and dielectrophoresis at ambient temperature. The current-voltage relation indicates that strong substrate-nanotube interconnects carrying mA currents are established inside the template pores. The method is suitable for large-scale, rapid, three-dimensional assembly of 1,000,000 nanotubes per square centimeter area using mild conditions. Circuit interconnects made by the method can be used for nanoscale electronics applications.
Abstract:
A template is provided on a substrate with a pattern of nanoscale pores extending through to the substrate. The template may be, for example, porous anodic alumina. Self-assembling molecules are then introduced to the template, such as by immersing a template in a solution of these molecules. The self-assembling molecules have a bonding group that will bond with the substrate. The result is that the self-assembling molecules, possibly after being triggered to self-assemble, assemble to form nanoscale islands in the pores. Optionally, thereafter the template may be stripped from the substrate.