摘要:
A method of separating particles is provided that includes exposing a selective PDMS adhesive to a particle-contaminated surface, where the selective PDMS adhesive captures particles present on the particle-contaminated surface to form a fouled selective PDMS adhesive, and exposing the fouled selective PDMS adhesive to a PDMS transfer sheet, where particles outside of a desired range are transferred over to the PDMS transfer sheet, where the fouled selective PDMS adhesive retains only the particles of a desired range.
摘要:
The separation of single-walled carbon nanotubes (SWNTs), by electronic type using centrifugation of compositions of SWNTs and surface active block copolymers in density gradient media.
摘要:
A method of separating particles is provided that includes exposing a selective PDMS adhesive to a particle-contaminated surface, where the selective PDMS adhesive captures particles present on the particle-contaminated surface to form a fouled selective PDMS adhesive, and exposing the fouled selective PDMS adhesive to a PDMS transfer sheet, where particles outside of a desired range are transferred over to the PDMS transfer sheet, where the fouled selective PDMS adhesive retains only the particles of a desired range.
摘要:
A method for characterizing carbon nanotubes comprising: providing a conductive substrate and applying an insulating layer on the conductive substrate; forming a carbon nanotube structure on a surface of the insulating layer, the carbon nanotube structure includes at least one carbon nanotube; placing the carbon nanotube structure under a scanning electron microscope, adjusting the scanning electron microscope with an accelerating voltage ranging from 5˜20 KV, a dwelling time ranging 6˜20 microseconds and a magnification ranging from 10000˜100000 times; taking photos of the carbon nanotube structure with the scanning electron microscope; and, obtaining a photo of the carbon nanotube structure, the photo shows the at least one carbon nanotube and a background.
摘要:
A method for characterizing carbon nanotubes comprising: providing a conductive substrate and applying an insulating layer on the conductive substrate; forming a carbon nanotube structure on a surface of the insulating layer, the carbon nanotube structure includes at least one carbon nanotube; placing the carbon nanotube structure under a scanning electron microscope, adjusting the scanning electron microscope with an accelerating voltage ranging from 5˜20 KV, a dwelling time ranging 6˜20 microseconds and a magnification ranging from 10000˜100000 times; taking photos of the carbon nanotube structure with the scanning electron microscope; and, obtaining a photo of the carbon nanotube structure, the photo shows the at least one carbon nanotube and a background.
摘要:
This invention belongs to the technical field of integrated circuit manufacturing and specifically relates to a method for separating carbon nanotube materials with different conductive properties. The method is comprised of: immersing an integrated circuit material containing metallic carbon nanotubes and semiconductor carbon nanotubes into fluid; introducing the fluid into the same container from the same inlet; on the four sides of the container, forming an electric field and arranging a pair of magnetic poles generating magnetic lines vertical to the electric field; changing the direction and intensity of the electric lines of the electric field and those of the magnetic fields to separate the metallic carbon nanotubes from the semiconductor carbon nanotubes. By means of the method of this invention, the purity of the obtained semiconductor carbon nanotubes and the metallic carbon nanotubes is high, so the product yield of the integrated circuit containing the semiconductor carbon nanotubes is capable of being greatly enhanced. This method is simple, easy, low in cost and capable of greatly reducing the manufacturing cost of high-purity carbon nanotubes.
摘要:
The invention provides methods and systems for separating particles that exhibit different Raman characteristics. The method can include introducing nanoparticles, on which Raman-active molecules are adsorbed, into a photopolymerizable resin and exposing to excite Raman active vibrational modes of the molecules to generate Raman-shifted radiation suitable for polymerizing the resin such that the Raman-shifted radiation causes selective polymerization of a resin surrounding nanoparticles if the nanoparticles provide a Raman enhancement factor greater than a threshold. In addition, methods for electrically isolating nanoparticles, or selectively removing one type of nanoparticles from collections, are disclosed. These methods rely on generation of blue-shifted anti-Stokes photons to selectively expose portions of a photoresist covering the nanoparticles to those photons. Such exposure can cause a change in the exposed portions (e.g., polymerize or increase solubility to a developing agent), which can be employed to achieve isolation of the nanoparticles or their selective removal.
摘要:
The separation of single-walled carbon nanotubes (SWNTs), by electronic type using centrifugation of compositions of SWNTs and surface active block copolymers in density gradient media.
摘要:
Methods and systems for separating carbon nanotubes are provided. An exemplary method of separating semiconducting carbon nanotubes and metallic carbon nanotubes contained within a solution can include providing electromagnetic waves travelling in one or more resonance modes and scattering at least a portion of the electromagnetic waves to form an electric gradient with the scattered waves. The method can further include recycling at least a portion of the scattered waves to the one or more resonance modes and separating at least a portion of the semiconducting carbon nanotubes and the metallic carbon nanotubes using the electric gradient.
摘要:
The separation of single-walled carbon nanotubes (SWNTs), by electronic type using centrifugation of compositions of SWNTs and surface active block copolymers in density gradient media.