Abstract:
Provided herein are systems and methods for producing nitrophosphates and mineralized carbon. Advantageously, the systems and methods are capable of sequestering carbon from the atmosphere. The systems generally include a first reactor for producing nitric acid; a mixer for mixing the nitric acid produced in the first reactor with a phosphate source, thereby producing nitro-phosphoric acid; and a second reactor for producing a solution comprising nitrophosphates and mineralized carbon, wherein the second reactor is operable to receive: the nitro-phosphoric acid from the mixer, ammonia, water, and carbon dioxide.
Abstract:
The present disclosure is generally directed to a water processing system. In some embodiments, the water processing system may be configured to generate a potassium salt, such as potassium nitrate, an ammonium salt, such as ammonium nitrate, or both. In some embodiments, the water processing system may be at least partially powered by renewable energy, such as by using a liquid storage system that is at least partially underground. In some embodiments, the water processing system may be configured to reuse certain greenhouse emissions to improve performance of power generation systems associated with the water processing system.
Abstract:
Systems and methods for pre-treatment of acid gas are presented in which ammonium is removed from the acid gas in an absorber that is operated at significantly elevated temperature using dilute phosphoric acid. While seemingly incompatible, absorbing ammonia at high heat in the absorber will allow for production of a diammonium phosphate product that is ultra-low in residual sulfurous compounds and prevent crystallization of phosphate salts due to the increased solubility of the salts in the hot diluted solvent.
Abstract:
Systems and methods of producing chemical compounds are disclosed. An example chemical production system includes a combustion chamber having intake ports for entry of a gas mixture. An igniter ignites the gas mixture in the intake chamber to facilitate a reaction at a high temperature and high pressure. A nozzle restricts exit of the ignited gas mixture from the combustion chamber. An expansion chamber cools the ignited gas. The expansion chamber has an exhaust where the cooled gas exits the expansion chamber. A chemical compound product is formed in the expansion chamber.
Abstract:
An organic particular material and a method for producing the material is disclosed, as well as multiple uses of the material produced by the same method for use as soil improver, combating the Iberia snail, fire resisting absorption of flammable liquids as well as fire extinguisher.
Abstract:
Phosphate rock is reacted with phosphoric acid to produce monobasic calcium phosphate. Monobasic calcium phosphate is reacted with ammonium carbonate to produce ammonium phosphate. Dibasic calcium phosphate is also produced as a by-product when monobasic calcium phosphate reacting with ammonium carbonate. The dibasic calcium phosphate is reacted with sulfuric acid to produce phosphoric acid. The phosphoric acid is used to react with phosphate rock. Ammonium sulfate or ammonium hydroxide may be used instead of ammonium carbonate. Phosphate other than ammonium phosphate can be produced if calcium phosphate is reacted with a-y to produce x-phosphate, where x is lithium, sodium, ammonium or potassium and y is carbonate, hydroxide or sulfate.
Abstract:
There is disclosed a class of inhibitors for mono- and diammonium phosphates which are water soluble and effective at small concentrations rendering the phosphates acceptable in most utilities without separation of the inhibitor. The class of inhibitors are water soluble alkali metal phosphate salts selected from sodium tripolyphosphate, sodium potassium tripolyphosphate, sodium acid pyrophosphate, sodium pyrophosphate, sodium hexametaphosphate, trisodium phosphate, disodium phosphate and monosodium phosphate. Effective amounts of these salts range from about 0.025 percent to about 0.3 percent by weight in the ammonium phosphates. It is particularly advantageous that these salts are useful in both types of ammonium phosphates.
Abstract:
A method of removing aluminum, magnesium, iron and other impurities from wet process phosphoric acid is provided. The method comprises partially ammoniating the acid and reacting the acid with a fluoride ion donating compound to precipitate aluminum- and magnesium-containing ralstonite and ammonium fluorosilicate which can be easily separated from the acid thereby producing a partially ammoniated wet process phosphoric acid of reduced impurities content.
Abstract:
In the process of the invention spent phosphoric acid is concentrated and stripped with air to a greater than 50% P.sub.2 O.sub.5 concentration to remove nitric acid. As a result of concentrating the spent acid a portion of the aluminum precipitates as monoaluminum phosphate, which is recovered by filtration. The filtrate is then ammoniated to produce a monoammonium phosphate solution. The solids precipitated during ammoniation and comprising aluminum ammonium phosphate which contains other metal phosphates are washed and reacted with aqueous ammonia to form diammonium phosphate.
Abstract:
Ammonium orthophosphate products are prepared by reacting ammonia and phosphoric acid together at high speed under vigorous mixing conditions by spraying the reactants through a two-phase, dual coaxial mixer/sprayer and separately controlling the supply and axial outflow rate of the phosphoric acid at 1 to 10 m/sec. and the outflow rate of ammonia at 200 to 1000 m/sec. (N.T.P.). Thorough mixing and a homogeneous product is obtained by directing the outflow spray into a coaxial cylindrical reaction chamber of a specified size with respect to the diameter of the outermost duct of the sprayer/mixer. The product may be granulated on a moving bed of granules and adjusted in respect of the NH.sub.3 to H.sub.3 PO.sub.4 content by changing the concentration of the phosphoric acid and/or supplying additional ammonia to the granulation bed.