摘要:
A device and a method are provided for reacting a starting material in at least two reactors connected to each other, including the reacting of the starting material in a first reactor to a first product, removing the first product from the first reactor using a jet pump, wherein a negative pressure zone of the jet pump is operationally connected to the first reactor, so that the first product of the first reactor moves through the negative pressure zone in a propulsion jet of a propulsion medium of the jet pump, conducting the propulsion medium having the first product into a second reactor, wherein the first product is allowed to react into a second product, separating the second product from the propulsion medium and discharging the separated second product.
摘要:
The invention relates to a process for the preparation of alkali metal cyanides as a solid substance, comprising the steps of: i) an absorption step in the form of an absorption of hydrogen cyanide from a hydrogen cyanide-containing synthesis gas in an aqueous alkali metal hydroxide solution; ii) a crystallization step in the form of introducing said alkali metal cyanide solution into an evaporative crystallizer; iii) a separation step; iv) a recycle step; v) a drying step.
摘要:
Disclosed is a process for co-manufacture of ACRN and HCN with improved HCN selectivity and reduced solids formation in a shared product recovery section.
摘要:
Process for making purified hydrogen cyanide. The process includes feeding a reaction product including HCN, water, and organonitriles to a separation vessel; taking a liquid slip stream of HCN, water and organonitriles from the separation vessel; and feeding the liquid slipstream into a sidestream stripper to purge nitriles from the HCN reaction product.
摘要:
The present invention relates to a process for preparing alpha-hydroxycarboxylic esters from the alcoholysis of alpha-hydroxycarboxamides in the gas phase, characterized in that the conversion is effected in the presence of water.
摘要:
The present invention provides materials for improving the ignition of gaseous reactants in metal catalyzed oxidation reactions comprising a metal catalyst gauze, preferably, a platinum/rhodium catalyst gauze, having in contact therewith, from 0.25 to 1.5 wt. %, based on the weight of the metal catalyst gauze, of one or more pieces of previously used metal catalyst gauze. Further, methods of making the metal catalyst materials comprise shaping the pieces of previously used metal catalyst gauze and placing them equidistant from each other in contact with or on the surface of the metal catalyst gauze. And methods of using the materials comprise feeding into the reactor a gas mixture of oxygen or air and one or more reactant gases, and igniting the gas mixture at the surface of one or more or all of the pieces of previously used metal catalyst.
摘要:
The invention provides an oxygen Andrussow process for production of hydrogen cyanide from a methane-containing feedstock such as natural gas in the presence of oxygen and ammonia over a platinum catalyst, wherein the production of byproduct organonitrile impurities, such as acrylonitrile, is reduced. Limiting the content of C2 hydrocarbons in the methane feedstock in the oxygen Andrussow process, in contrast to the air Andrussow process, has been found to reduce formation of organonitriles, such as acrylonitrile. The organonitrile impurities can require additional processing for removal cause fouling of equipment, and can also contribute to hydrogen cyanide polymerization. Reduction of C2+ hydrocarbon levels to less than 2 wt %, or 1 wt %, or less than 0.1 wt %, in the methane can provide an improved yield of higher purity HCN. Reduction of C2+ hydrocarbon levels also solves the problem of polymer buildup in process equipment, reducing downtime required for cleaning when higher C2+ hydrocarbon levels are present in the reaction feed.
摘要:
Described is a method for the production and recovery of hydrogen cyanide, which includes removing ammonia from a crude hydrogen cyanide stream. The method integrates heat removed from a crude hydrogen cyanide stream into other areas of the hydrogen cyanide recovery process. The crude hydrogen cyanide stream may be passed through a first waste heat boiler and a second waste heat boiler prior to being fed to an ammonia absorber, which produces a hydrogen cyanide rich stream. Hydrogen cyanide is recovered from the hydrogen cyanide rich stream. Equipment fouling with HCN polymer is reduced.
摘要:
The present invention relates to a reactor (201) for preparing hydrogen cyanide by the Andrussow process, to an equipment (200) comprising said reactor and to a process for preparing hydrogen cyanide by the Andrussow process. The reactor (201) comprising at least one gas inlet (I) for reactant gases mixture, a catalyst (203), a porous support for the catalyst (204), a porous sub support (205, 206) and at least one outlet (P8) for the reaction products. According to the invention, said reactor has a cone frustum shaped metallic casing (210) and comprises inside the metallic casing, a gas distributor (202) located between the gas inlet and the catalyst, said distributor comprising at least one cone frustum element (D1, . . . Dn) having an upper base directed towards the gas inlet (I).
摘要:
The present invention relates to an integrated plant which comprises a plant for the electrothermic production of hydrogen cyanide and a separating device for separating hydrogen cyanide from the reaction mixture of the electrothermic production of hydrogen cyanide while obtaining at least one stream of gas containing hydrogen and/or hydrocarbons, the integrated plant having a device for introducing a gas into a natural gas network, to which device a stream of gas containing hydrogen and/or hydrocarbons is fed from the separating device via at least one conduit. This integrated plant affords flexible use of electricity by a method in which a stream of gas, containing hydrogen and/or hydrocarbons, is fed into a natural gas network from the separating device and the amount and/or the composition of the stream of gas fed into the natural gas network is changed in dependence on the electricity supply.