Abstract:
Continuous thermolysis of carbonaceous matter in a controlled temperature and steam environment to produce a low volatility char, with subsequent steam activation of the char under pressure producing activated carbon and pressurized syn-gas, all of which are carried out in a reactor system including one or more vessels. The syn-gas is enriched in hydrogen in a high temperature shift reactor and separated in a pressurized swing adsorber to provide a pressurized pure hydrogen stream and a low-pressure combustible tail gas. The tail gas and the volatiles from the thermolysis step are combusted to provide process steam and electric power. The electric power is used to supplement the thermal requirements of the process with the balance being exported.
Abstract:
Methods and systems for producing activated carbon from a particulate coal feedstock that involve one or more of the introduction of a buffering gas, a moisture spray, a finest carbon fraction as a fuel, and certain gas ratios. Different methods and system configurations allow the production of activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions.
Abstract:
The present disclosure provides biorefining systems for co-producing activated carbon along with primary products. A host plant converts a feedstock comprising biomass into primary products and carbon-containing co-products; a modular reactor system pyrolyzes and activates the co-products, to generate activated carbon and pyrolysis off-gas; and an oxidation unit oxidizes the pyrolysis off-gas, generating CO2, H2O, and energy. The energy is recycled and utilized in the host plant, and the CO2 and H2O may be recycled to the reactor system as an activation agent. The host plant may be a saw mill, a pulp and paper plant, a corn wet or dry mill, a sugar production facility, or a food or beverage plant, for example. In some embodiments, the activated carbon is utilized at the host plant to purify one or more primary products, to purify water, to treat a liquid waste stream, and/or to treat a vapor waste stream.
Abstract:
This disclosure relates to carbonizing and activating carbonaceous material. In some embodiments, the material is selected from coconut-derived material and like material of vegetable origin and resin materials to produce activated carbon, the production comprising supplying the material to the inlet end of a kiln, supplying to the kiln an atmosphere comprising steam or carbon dioxide substantially free of oxygen, maintaining a first region of the kiln having an independently controllable supply of heat at a temperature sufficient for drying or removing solvent from the material without carbonization, maintaining a second region of the kiln having an independently controllable supply of heat downstream from the first region at a temperature sufficient for carbonization of the material without activation; maintaining a third region of the kiln having an independently controllable supply of heat downstream from the second region at a temperature sufficient for activation of the carbonized material, and collecting activated carbon from the discharge end of the kiln.
Abstract:
A vertical multi-stage fluidized bed apparatus including a plurality of horizontal perforated partitioning plates disposed therein so as to partition the apparatus is provided, wherein an upper horizontal perforated partitioning plate is set to have a larger aperture rate than a lower horizontal perforated partitioning plate. From a lower part of the apparatus, feed carbon and fluidizing gas are continuously supplied so as to provide a gas superficial velocity in the fluidized bed which is 2-4 times a minimum fluidizing velocity of the feed carbon, thereby subjecting the feed carbon to fluidization with the fluidizing gas and activation with steam at 750-950° C. simultaneously to discharge activated carbon continuously from an upper part of the apparatus. As a result, activated carbon of even a high degree of activation is produced at a high yield comparable to that obtained in a batchwise operation.
Abstract:
The invention relates to a process for producing granular, particularly spherical activated carbon by carbonization of suitable carbonaceous polymers in the form of polymer granules, in particular polymer spherules, as a starting material, which are convertible by carbonization into carbon at least essentially, wherein the polymer granules, in particular the polymer spherules, are continuously moved through a carbonization apparatus comprising a plurality of temperature zones and/or a temperature gradient so that an at least essentially complete conversion of the starting material to carbon is effected.
Abstract:
A vertical multi-stage fluidized bed apparatus including a plurality of horizontal perforated partitioning plates disposed therein so as to partition the apparatus is provided, wherein an upper horizontal perforated partitioning plate is set to have a larger aperture rate than a lower horizontal perforated partitioning plate. From a lower part of the apparatus, feed carbon and fluidizing gas are continuously supplied so as to provide a gas superficial velocity in the fluidized bed which is 2-4 times a minimum fluidizing velocity of the feed carbon, thereby subjecting the feed carbon to fluidization with the fluidizing gas and activation with steam at 750-950° C. simultaneously to discharge activated carbon continuously from an upper part of the apparatus. As a result, activated carbon of even a high degree of activation is produced at a high yield comparable to that obtained in a batchwise operation.
Abstract:
A process and a set of equipment for reactivating spent activated carbon onto which pollutants were adsorbed. The present process comprises subjecting the activated carbon to be reactivated in a mixed solution consisting of ethanol, sodium hydroxide solution and water to effectuate the desorption of the pollutants adsorbed on the activated carbon. The equipment includes (A) a mixing tank for mixing given amounts of water, ethanol and sodium hydroxide solution which are supplied from the respective receptacles thereof; (B) a reactivation reactor for receiving the mixed solution from the mixing tank and subjecting the spent activated carbon filled therein to the mixed solution to effect the desorption of the pollutants adsorbed on the spent activated carbon, wherein the reactivation reactor includes a unit for regulating temperature of the mixed solution; and (C) a storage tank for receiving the reactivated carbon.
Abstract:
A display banner that may be attached to headgear and adjusted to provide weather protection for the back of the head, neck, ears and portions of the back and shoulders. It may allow the top of the wearer's head and hairstyle to remain uncovered, well ventilated and well groomed. Its shape and insertable supports enhance its inherent potential area for displaying promotional material and/or the preferred art of the wearer.