摘要:
Highly mesoporous activated carbon products are disclosed with mesoporosities characterized by mesopore volumes of 0.7 to 1.0 cubic centimeters per gram or greater. Also disclosed are activated carbon products characterized by a Molasses Number of about 500 to 1000 or greater. Also disclosed are activated carbon products characterized by a Tannin Value of about 100 to 35 or less. The activated carbon products may be further characterized by total pore volumes of at least 0.85 cubic centimeters per gram and BET surface areas of at least about 800 square meters per gram. The activated carbon product may be derived from a renewable feedstock.
摘要:
This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
摘要:
The present disclosure provides biorefining systems for co-producing activated carbon along with primary products. A host plant converts a feedstock comprising biomass into primary products and carbon-containing co-products; a modular reactor system pyrolyzes and activates the co-products, to generate activated carbon and pyrolysis off-gas; and an oxidation unit oxidizes the pyrolysis off-gas, generating CO2, H2O, and energy. The energy is recycled and utilized in the host plant, and the CO2 and H2O may be recycled to the reactor system as an activation agent. The host plant may be a saw mill, a pulp and paper plant, a corn wet or dry mill, a sugar production facility, or a food or beverage plant, for example. In some embodiments, the activated carbon is utilized at the host plant to purify one or more primary products, to purify water, to treat a liquid waste stream, and/or to treat a vapor waste stream.
摘要:
The present disclosure provides biorefining systems for co-producing activated carbon along with primary products. A host plant converts a feedstock comprising biomass into primary products and carbon-containing co-products; a modular reactor system pyrolyzes and activates the co-products, to generate activated carbon and pyrolysis off-gas; and an oxidation unit oxidizes the pyrolysis off-gas, generating CO2, H2O, and energy. The energy is recycled and utilized in the host plant, and the CO2 and H2O may be recycled to the reactor system as an activation agent. The host plant may be a saw mill, a pulp and paper plant, a corn wet or dry mill, a sugar production facility, or a food or beverage plant, for example. In some embodiments, the activated carbon is utilized at the host plant to purify one or more primary products, to purify water, to treat a liquid waste stream, and/or to treat a vapor waste stream.
摘要:
This disclosure provides a halogenated activated carbon composition comprising carbon, a halogenated compound and a salt. In some embodiments, the halogenated compound and the salt comprise a naturally occurring salt mixture, as may be obtained from ocean water, salt lake water, rock salt, salt brine wells, for example. In some embodiments, the naturally occurring salt mixture comprises Dead Sea salt.
摘要:
The present disclosure provides biorefining systems for co-producing activated carbon along with primary products. A host plant converts a feedstock comprising biomass into primary products and carbon-containing co-products; a modular reactor system pyrolyzes and activates the co-products, to generate activated carbon and pyrolysis off-gas; and an oxidation unit oxidizes the pyrolysis off-gas, generating CO2, H2O, and energy. The energy is recycled and utilized in the host plant, and the CO2 and H2O may be recycled to the reactor system as an activation agent. The host plant may be a saw mill, a pulp and paper plant, a corn wet or dry mill, a sugar production facility, or a food or beverage plant, for example. In some embodiments, the activated carbon is utilized at the host plant to purify one or more primary products, to purify water, to treat a liquid waste stream, and/or to treat a vapor waste stream.
摘要:
Biogenic activated carbon compositions disclosed herein comprise at least 55 wt % carbon, some of which may be present as graphene, and have high surface areas, such as Iodine Numbers of greater than 2000. Some embodiments provide biogenic activated carbon that is responsive to a magnetic field. A continuous process for producing biogenic activated carbon comprises countercurrently contacting, by mechanical means, a feedstock with a vapor stream comprising an activation agent including water and/or carbon dioxide; removing vapor from the reaction zone; recycling at least some of the separated vapor stream, or a thermally treated form thereof, to an inlet of the reaction zone(s) and/or to the feedstock; and recovering solids from the reaction zone(s) as biogenic activated carbon. Methods of using the biogenic activated carbon are disclosed.
摘要:
Biomass combustion processes may be controlled to intentionally generate a carbon-containing ash, from which activated carbon is produced according to the methods disclosed. Some variations provide an economically attractive process for producing an activated carbon product, the process comprising combusting a carbon-containing feedstock to generate energy, combustion products, and ash, wherein the ash contains at least 10 wt % carbon; separating and recovering carbon contained in said ash; and further activating or treating the separated carbon, to generate an activated carbon product. Many process variations are disclosed, and uses for the activated carbon product are disclosed.