摘要:
A method of producing alumina-silica ceramic with mullite whisker structure has been produced as armor materials for protecting high velocity projectile. The mixing composition of starting powders consists of alumina, quartz, kaoline, feldspar and talc, and the green compacts were sintered at the temperature range from 1200 to 1450null C. for 0.5 to 3 hours. Mullite whisker structure in the ceramic was fabricated and grown in the period of liquid phase sintering. The whisker phase of mullite is homogeneously distributed in the ceramic.
摘要:
A ceramic composite is provided comprising ceramic fibers, glass microballoons and/or diatoms, bound together with a ceramic reinforcing cloth with a sol-gel ceramic binder. The composite is particularly useful as a high strength, high temperature insulation material.
摘要:
Processes are provided for forming composites comprising a LaMnO.sub.3 perovskite coatings (or a related perovskite) on a mat of ceramic particles (e.g., fibers, microballoons, or mixtures thereof) or LaMnO.sub.3 -family sol-gel binders infused into the mat to form the connecting, rigidifying bridges.
摘要:
A ceramics composite material containing crystallized glass as the matrix and fibers or whiskers of ceramics as a reinforcement material, is obtained by melting original glass to form crystallized glass, compounding the same with fibers or whiskers of oxide ceramics and thereafter crystallizing the original glass. This ceramics composite material does not form any voids and can easily contain at least 50 volume percent of the reinforcement material, whereby a good mechanical strength and fracture toughness are achieved. In the compounding step, the content of the reinforcement can be further increased by forcing out any excess part of the original glass from the reinforcement material by applying pressure to a substance obtained by mixing the original glass with the reinforcement. Further, the ceramics composite material can be efficiently formed into a desired configuration by heating because the original glass flows viscously.
摘要:
A ceramics composite material containing crystallized glass as the matrix and fibers or whiskers of ceramics as a reinforcement material, is obtained by melting original glass to form crystallized glass, compounding the same with fibers or whiskers of oxide ceramics and thereafter crystallizing the original glass. This ceramics composite material does not form any voids and can easily contain at least 50 volume percent of the reinforcement material, whereby a good mechanical strength and fracture toughness are achieved. In the compounding step, the content of the reinforcement can be further increased by forcing out any excess part of the original glass from the reinforcement material by applying pressure to a substance obtained by mixing the original glass with the reinforcement. Further, the ceramics composite material can be efficiently formed into a desired configuration by heating because the original glass flows viscously.
摘要:
A heat processing procedure is used to create reinforcing whiskers of TiO.sub.2 in glass-ceramic materials in the LAS and MAS family. The heat processing procedure has particular application in creating TiO.sub.2 in-situ in a modified .beta.-eucryptite system.
摘要:
Ceramic insulation has a mat of intersecting, discrete ceramic fibers bonded with a sol-gel glass binder. A fabric-reinforced glass coating is bonded to at least one surface of the mat. The insulation is prepared by forming a slurry of ceramic fibers, molding the slurry to form a soft felt mat, drying the mat, and incrementally introducing the binder into the mat with a multiple-impregnation technique, which controls shrinkage of the ceramic fiber mat. The fabric-reinforced glass coating is formed by applying a glass fiber cloth to a surface of the ceramic fiber mat and coating the same with a powdered glass. The powdered glass is melted and cooled.The process provides a layering technique that permits formation of a continuous fibrous structure having layers that impart distinct characteristics at desired regions within the structure. By using different ceramic fibers and fibers of differing physical dimension, or by including additives with the slurries, tailoring of the physical characteristics of the insulation is achieved.Improved properties are obtained by stitching the fiber cloth to the mat, curing the glass binder in a nitrogen atmosphere to replace oxygen in the glass with nitrogen, using a barrier coated cloth within the glass overcoat, or any combination thereof.
摘要:
Whisker-reinforced ceramic matrix composites comprising a principal crystal phase selected from the group of anorthite, barium-stuffed cordierite, and mixed cordierite/anorthite are prepared by extrusion of extrudable ceramic batches comprising an extrusion vehicle and a solids component consisting essentially of inorganic whiskers and powdered glass, the glass being a thermally crystallizable glass containing an internal nucleant and capable of being consolidated at ambient pressures or above to a dense consolidated preform which may be converted to a substantially glass-free whisker-reinforced ceramic matrix composite by thermal treatment.
摘要:
A composite ceramic extrusion die consisting of a silicon carbide wisker-reinforced cordierite ceramic wherein the predominant matrix phase is cordierite or, preferably, barium-stuffed cordierite having a crystal compositon xBaO.4MgO.(4+x)Al.sub.2 O.sub.3.(10-2x)SiO.sub.2 wherein x ranges from zero up to about 0.5, such extrusion die exhibiting excellent durability under the conditions of non-ferrous metal alloy extrusion at temperatures of 700.degree.-900.degree. C., is described.
摘要翻译:由碳化硅晶须增强堇青石陶瓷组成的复合陶瓷挤出模具,其中主要的基体相是堇青石,或者优选具有xBaO.4MgO(4 + x)Al 2 O 3(10-2x)的晶体组成的钡填充的堇青石) SiO 2,其中x在0至约0.5的范围内,这种在700-900℃的有色金属合金挤出条件下表现出优异的耐久性的挤出模头。
摘要:
A process for making a porous ceramic composite with a bimodal pore size distribution includes the steps of mixing an organosilicon precursor, an alcohol, water, a catalyst, granules, particles, whiskers or powders of a fumed silica and granules, particles, whiskers or powders of a ceramic material and a combustible material having a diameter in a range of 500 angstroms to 500 microns to form a mixture, pouring the mixture into a mold, allowing the mixture to gel form a ceramic composite and drying the ceramic composite. The process also includes the step of heating the ceramic composite in either air or oxygen to burn away the combustible material. The organosilicon precursor is selected from a group consisting of tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane and tetrabutoxysilane. The alcohol is selected from the group consisting of methanol, ethanol, propanol and butanol.