Abstract:
Systems and methods for modifying rheology of a cement slurry are described. Systems and methods may include a composition including at least one of: one or more polycarboxylate ethers (PCEs); one or more functionalized polyacrylamide co-polymers; and one or more polysaccharide biopolymers (BP).
Abstract:
Provided is a method for cementing. The method comprises providing a glass bead suspension comprising water, a synthetic hectorite, and glass beads. The method further comprises mixing the glass bead suspension with components comprising cement and additional water to form a cement composition. The method additionally comprises allowing the cement composition to set.
Abstract:
Systems and methods for modifying rheology of a cement slurry are described. Systems and methods may include a composition including at least one of: one or more polycarboxylate ethers (PCEs); one or more functionalized polyacrylamide co-polymers; and one or more polysaccharide biopolymers (BP).
Abstract:
Disclosed herein are cement compositions and methods of using set-delayed cement compositions in subterranean formations. In one embodiment, a method of cementing in a subterranean formation is described. The method may comprise providing a set-delayed cement composition comprising water, pumice, hydrated lime, and a set retarder; activating the set-delayed cement composition with a liquid additive to produce an activated cement composition, wherein the liquid additive comprises a monovalent salt, a polyphosphate, a dispersant, and water; and allowing the activated cement composition to set.
Abstract:
A variety of methods and compositions are disclosed, including, in one embodiment a method of cementing comprising: providing a pozzolan slurry comprising a pozzolan and water; providing a lime slurry comprising hydrated lime and water; allowing the pozzolan slurry and the lime slurry to remain separate for about one day or longer; mixing the pozzolan slurry and the lime slurry to form a cement composition; and allowing the cement composition to set.
Abstract:
Activating a reaction of a sealant, such as cement, with a fiber optic cable, the reaction causing hardening of the sealant. The sealant may be used in wellbore cementing operations to cement a casing in a wellbore. The fiber optic cable may be deployed by attaching it to the outside of a casing during insertion into the wellbore. The activation of the sealant can be via thermal or optical initiation in order to causing a hydration reaction or polymerization.
Abstract:
Provided is a method for cementing. The method comprises providing a glass bead suspension comprising water, a synthetic hectorite, and glass beads. The method further comprises mixing the glass bead suspension with components comprising cement and additional water to form a cement composition. The method additionally comprises allowing the cement composition to set.
Abstract:
Various embodiments disclosed relate to constitutionally dynamic polymer for treatment of subterranean formations. In various embodiments, the present invention provides a method of treating a subterranean formation, the method including placing in the subterranean formation a composition including a constitutionally dynamic polymer.
Abstract:
The present disclosure relates to downhole fluid additives including a clay, a hydroxylated polymer, a cation, and water. The disclosure further relates to downhole fluids, including drilling fluids, spaces, cements, and proppant delivery fluids containing such as downhole fluid additive and methods of using such fluids. The downhole fluid additive may have any of a variety of functions in the downhole fluid and may confer any of a variety of properties upon it, such as salt tolerance or desired viscosities even at high downhole temperatures.
Abstract:
An apparatus and method may operate to position an electrode assembly within a fluid. The electrode assembly may include an injection electrode and a receiving electrode in spaced relation to one another. The method may include providing a series of excitation signals at a plurality of frequencies to the injection electrode to inject a series of injection signals into the fluid. The method can further include receiving signals in response to the series of injection signals through the receiving electrode. The received signals can be representative of an impedance spectrum including impedance values representative of the fluid. The method can further include generating a phase angle fingerprint based on the impedance spectrum to characterize the fluid according to the phase angle fingerprint. Additional apparatus, systems, and methods are disclosed.